精英家教网 > 高中数学 > 题目详情
(1)已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求实数a的值.
(2)已知M={2,a,b},N={2a,2,b2}且M=N,求a、b的值.
分析:(1)依据元素属于集合的知识进行转化,列出关于实数a的方程,求解方程得出实数a的值.注意对所求得的值进行验证,因为三个元素要互不相等;
(2)根据集合相等进行转化,列出关于实数a,b的方程组,进而求出实数a,b的值.也要对所求的值进行必要的检验,以免违背集合中元素的互异性.
解答:解:(1)由题意:
a+2=1或(a+1)2=1或a2+3a+3=1,
解得a=-1或a=-2或a=0.
据元素的互异性可排除-1,-2,∴a=0.
(2)由题意
a=2a
b=b2
a=b2
b=2a

解得
a=0
b=1
a=
1
4
b=
1
2
a=0
b=0

根据集合中元素的互异性得
a=0
b=1
a=
1
4
b=
1
2
点评:本题主要考查了元素与集合之间的关系、集合与集合之间的相等关系,根据这些关系列出关于未知数的方程或方程组达到求解未知数的目的.解完之后要注意对所求的解进行验证,以免违背集合中元素的互异性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列a,b,c是各项均为正数的等差数列,公差为d(d>0).在a,b之间和b,c之间共插入n个实数,使得这n+3个数构成等比数列,其公比为q.
(1)求证:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且s,t都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用a,c,n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M.
对于两个集合M,N,定义集合M△N={x|fM(x)•fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)写出fA(1)和fB(1)的值,并用列举法写出集合A△B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X△A)+Card(X△B)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P△A)△(Q△B)=A△B?

查看答案和解析>>

科目:高中数学 来源: 题型:

在解三角形中,已知A,a,b,给出下列说法:
(1)若A≥90°,且a≤b,则此三角形不存在;
(2)若A≥90°,则此三角形最多有一解;
(3)当A<90°,a<b时三角形不一定存在;
(4)若A<90°,且a=bsinA,则此三角形为直角三角形,且B=90°;
(5)当A<90°,且bsinA<a≤b时,三角形有两解.
其中正确说法的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d为实数,判断下列命题的真假.
(1)若ac2>bc2,则a>b
(2)若a<b<c,则 a2>ab>b2
(3)若a>b>0,则
a
d
b
c

(4)若0<a<b,则 
b
a
b+x
a+x

查看答案和解析>>

科目:高中数学 来源: 题型:013

选择题:

(1)已知,则

[  ]

(A)ABD三点共线

(B)ABC三点共线

(C)BCD三点共线

(D)ACD三点共线

(2)已知正方形ABCD的边长为1,则等于

[  ]

(A)0

(B)3

(C)

(D)

(3)已知,且四边形ABCD为平行四边形,则

[  ]

(A)abcd0

(B)abcd0

(C)abcd0

(D)abcd0

(4)已知DEF分别是△ABC的边BCCAAB的中点,且,则①;②;③;④

中正确的等式的个数为

[  ]

(A)1

(B)2

(C)3

(D)4

(5)是夹角为60°的两个单位向量,则的夹角为

[  ]

(A)30°

(B)60°

(C)120°

(D)150°

(6)若向量abc两两所成的角相等,且,则等于

[  ]

(A)2

(B)5

(C)25

(D)

(7)等边三角形ABC的边长为1,那么a·bb·cc·a等于

[  ]

(A)3

(B)3

(C)

(D)

查看答案和解析>>

同步练习册答案