精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,A= ,cosB=
(1)求cosC;
(2)设BC= ,求△ABC的面积.

【答案】
(1)解:∵cosB=

∴sinB= =

∴cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB= =


(2)解:∵cosC=

∴sinC= =

∵AC= = =3,

∴SABC= BCACsinC= ×3× =3.


【解析】(1)由已知利用同角三角函数基本关系式可求sinB,利用三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算cosC的值.(2)由(1)利用同角三角函数基本关系式可求sinC,利用正弦定理可求AC的值,进而利用三角形面积公式即可计算得解.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:

收入x (万元)

8.2

8.6

10.0

11.3

11.9

支出y (万元)

6.2

7.5

8.0

8.5

9.8

据上表得回归直线方程 = x+ ,其中 =0.76, = ,据此估计,该社区一户收入为15万元家庭年支出为(
A.11.4万元
B.11.8万元
C.12.0万元
D.12.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需用A,B两种原料,已知每种产品各生产1吨所需原料及每天原料的可用限额如下表所示,如果生产1吨甲产品可获利润3万元,生产1吨乙产品可获利4万元,则该企业每天可获得最大利润为万元.

原料限额

A(吨)

3

2

12

B(吨)

1

2

8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长分别为1, ,2 的三角形的最大角与最小角的和是(
A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a,b,c分别是角A,B,C所对的边,已知向量 =(cosA,sinA), =(cosB,﹣sinB),且| |=1.
(1)求角C的度数;
(2)若c=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)在[﹣1,0]上为单调增函数,则(
A.f(sin )<f(cos
B.f(sin1)>f(cos1)
C.f(sin )<f(sin
D.f(sin )>f(tan

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R)时,则下列所有正确命题的序号是
①若任意x∈R,则等式f(﹣x)+f(x)=0恒成立;
②存在m∈(0,1),使得方程|f(x)|=m有两个不等实数根;
③任意x1 , x2∈R,若x1≠x2 , 则一定有f(x1)≠f(x2
④存在k∈(1,+∞),使得函数g(x)=f(x)﹣kx在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1的棱长为1,在正方体表面上与点A距离是 的点形成一条曲线,这条曲线的长度是(

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案