精英家教网 > 高中数学 > 题目详情
如图:三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=3,侧棱AA1⊥底面ABC,D为C1B的中点,P为AB边上的动点.
(1)若P为AB中点,求证:PD∥平面ACC1A1
(2)若DP⊥AB,求四棱锥P-ACC1A1的体积.
分析:(1)P为AB中点,连结AC1,证明PD∥AC1,利用直线与平面平行的判定定理证明PD∥平面ACC1A1
(2)若DP⊥AB,求四棱锥P-ACC1A1的体积.
解答:解:(1)证明:P为AB中点,连结AC1,因为D为C1B的中点,所以PD是三角形ABC1的中位线,所以PD∥AC1,AC1?平面ACC1A1,由直线与平面平行的判定定理,可知PD∥平面ACC1A1
(2)三棱柱ABC-A1B1C1中,AB=AC=BC=2,DP⊥AB,
∴AP=3PB,解得BP=
1
2

又AA1=3,侧棱AA1⊥底面ABC,AC1=
13

所以四棱锥P-ACC1A1的体积,VP-ACC1A1=
3
4
VB-ACC1A1=
3
4
×
1
3
×2×3×
3
=
3
3
2
点评:本题考查直线与平面平行的判定定理,几何体的体积的求法,考查计算能力、空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案