精英家教网 > 高中数学 > 题目详情
9.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.

分析 求出抛物线的焦点坐标,利用线段AB中点M的纵坐标为4,通过y1+y2+p求解即可.

解答 解:抛物线x2=8y焦点F(0,2),过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,可得y1+y2=8.
则|AB|=y1+y2+p=8+4=12,
故答案为:12;

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若三点A(4,4),B(a,0),C(0,b),ab≠0,共线,则$\frac{1}{a}+\frac{1}{b}$=$\frac{1}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{bn}(bn>0)的首项为1,且前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S_{n-1}}}$(n≥2).
(1)求{bn}的通项公式;
(2)若数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}前n项和为Tn,问Tn>$\frac{1000}{2009}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“x=1”是“x2-3x+2=0”的(  )
A.必要但不充分条件B.充分但不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:“双曲线$\frac{y^2}{3}-\frac{x^2}{m}=1$的离心率$e∈({\sqrt{2},+∞})$”,命题q:“$\frac{{2{x^2}}}{m}+\frac{y^2}{m-2}=1$是焦点在x轴上的椭圆方程”.若命题“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m,n是两条直线,α,β是两个平面,则下列命题中正确的是(  )
A.m⊥α,α⊥β,m∥n⇒n∥βB.m∥α,α∩β=n⇒n∥m
C.α∥β,m∥α,m⊥n,⇒n⊥βD.m⊥α,n⊥β,m∥n⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知球O有个内接正方体,且球O的表面积为36π,则正方体的边长为$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,x),若$\overrightarrow a$⊥$\overrightarrow{b}$,则 x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在直三棱柱ABC-A1B1C1中,AC⊥BC,点M是侧面ABB1A1内的一点,若MC与平面ABC所成的角为30°,MC与平面ACC1A1所成的角也为30°,则MC与平面BCC1B1所称的角正弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案