精英家教网 > 高中数学 > 题目详情

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2数学公式,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

解:(Ⅰ)因为SB=SC,O为BC中点,所以SO⊥BC
而平面平面SBC⊥平面ABC,平面SBC∩平面ABC=BC,所以SO⊥平面ABC,
以OB、OA、OS为x,y,z轴建立直角坐标系,得B(,0,0),A(0,,0),S(0,0,),C(-,0,0),

设平面SAC的法向量为
,∴,可取
,故点B到平面SAC的距离d=||=
(Ⅱ)由已知得平面SBC的法向量=(0,1,0),平面SAC的法向量=(-1,1,1)
∴二面角A-SC-B的余弦值等于==
分析:(Ⅰ)以OB、OA、OS为x,y,z轴建立直角坐标系,用坐标表示点与向量,求得平面SAC的法向量,而,从而可求点B到平面SAC的距离d=||;
(Ⅱ)由已知得平面SBC的法向量=(0,1,0),平面SAC的法向量=(-1,1,1),从而可得二面角A-SC-B的余弦值.
点评:本题考查点到面的距离,考查面面角,解题的关键是建立空间直角坐标系,确定平面的法向量,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案