精英家教网 > 高中数学 > 题目详情

【题目】已知:函数.

1)当时,求的值域;

2)求的最大值.

【答案】1[15];(2)见解析

【解析】

1)根据题意,a1时,fx)=x22x+2=(x12+1,由二次函数的性质分析可得答案;

2)根据题意,fx)=x22ax+2=(xa2+2a2,是对称轴为xa,且开口向上的二次函数;按a的取值范围分3种情况讨论即可得答案.

1)根据题意,a1时,fx)=x22x+2=(x12+1

又由,则x=1,函数有最小值1,当x=-1,函数有最大值5,故1fx)≤5

即函数的值域为[15]

2)根据题意,fx)=x22ax+2=(xa2+2a2,是对称轴为xa,且开口向上的二次函数;

3种情况讨论:

a-1时,fx)在[-12]上为增函数,此时最大值为f2)=6-4a

-1a2时,此时最大值为fa)=2a2

a2时,fx)在[-12]上为减函数,此时最大值为f-1)=3+2a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

(1)求椭圆的方程;

(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是抛物线为上的一点,以S为圆心,r为半径做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.

求抛物线的方程.

求证:直线CD的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题:实数满足,其中,命题:实数满足.

(1),且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:

一次购物款(单位:元)

顾客人数

统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.

(Ⅰ)试确定 的值,并估计每日应准备纪念品的数量;

(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款元及以上的一次返利元;一次购物不超过元的按购物款的百分比返利,具体见下表:

一次购物款(单位:元)

返利百分比

请问该商场日均大约让利多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,其图象与y轴的交点为(0,1),且满足f(1﹣x)=f(1+x).

(1)求f(x);

(2)设 m0,求函数g(x)在[0m]上的最大值;

(3)设h(x)=lnf(x),若对于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆 上任意一点,点与圆心关于原点对称.线段的中垂线与交于点.

(1)求动点的轨迹方程

(2)设点,若直线轴且与曲线交于另一点,直线与直线交于点,证明:点恒在曲线上,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

我离开学校不久,发现自己把作业本忘在教室,于是立刻返回教室里取了作业本再回家;

我放学回家骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;

我放学从学校出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛下面是他们的一段对话甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”丁说:“戊参加‘诗词’比赛”戊说:“丁参加‘诗词’比赛”

已知这5个人中有2人参加演讲比赛3人参加诗词比赛,其中有2人说的不正确且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

同步练习册答案