( 12分) 函数.
(Ⅰ)当时,求的最小值;
(Ⅱ)当时,求的单调区间.
科目:高中数学 来源:2012-2013学年甘肃省高三(奥班)10月月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)函数,.
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论与的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省唐山市高三第一次月考文科数学试卷(解析版) 题型:解答题
(12分)函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.
(1)求的值及函数的值域;
(2)若,且,求的值.
查看答案和解析>>
科目:高中数学 来源:2014届河南省商丘市高一上学期第二次月考数学试卷 题型:解答题
(12分)函数f(x)定义在R上的偶函数,当x≥0时,f(x)=
(1)写出f(x)单调区间;
(2)函数的值域;
查看答案和解析>>
科目:高中数学 来源:2010年山西省忻州市高二下学期期末联考(文科)数学卷 题型:解答题
(本题满分12分)
函数f(x)=x3+bx2+cx+d图象经过点(0,2),且在x=-1处的切线方程为6x - y+7=0.
(1)求函数f(x)解析式;
(2)求函数 f(x)的单调递减区间;
(3)求函数f(x)在[0,2]上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com