精英家教网 > 高中数学 > 题目详情
11.已知集合$A=\left\{{\left.x\right|y=\sqrt{{2^x}-4}+\frac{1}{x-4}}\right\}$
1)求集合A;
2)若函数$f(x)=({log_2}\frac{x}{8})•({log_2}\frac{x}{4})(x∈A)$,求函数f(x)的值域.

分析 (1)由$\left\{\begin{array}{l}{{2}^{x}-4≥0}\\{x-4≠0}\end{array}\right.$,解得x范围即可得出;
(2)f(x)=(log2x-3)(log2x-2)=$(lo{g}_{2}x-\frac{5}{2})^{2}$-$\frac{1}{4}$,由x∈A,可得log2x≥1,且log2x≠2,即可得出函数f(x)的值域.

解答 解:(1)由$\left\{\begin{array}{l}{{2}^{x}-4≥0}\\{x-4≠0}\end{array}\right.$,解得x≥2,且x≠4.
∴A={x|x≥2且x≠4}.
(2)f(x)=(log2x-3)(log2x-2)
=$(lo{g}_{2}x)^{2}$-5log2x+6
=$(lo{g}_{2}x-\frac{5}{2})^{2}$-$\frac{1}{4}$,
∵x∈A,
∴log2x≥1,且log2x≠2,
∴当log2x∈[1,2)时,f(x)∈(0,2];
当log2x∈$(2,\frac{5}{2}]$时,f(x)∈$[-\frac{1}{4},0)$;
当log2x∈$(\frac{5}{2},+∞)$时,f(x)∈$[-\frac{1}{4},+∞)$.
∴函数f(x)的值域是$[-\frac{1}{4},+∞)$

点评 本题考查了函数的定义域与值域、对数的运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知直线l:2$\sqrt{2}x-y+3+8\sqrt{2}$=0和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2$\sqrt{3}$.
(1)求圆C1的方程;
(2)设圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于M,N两点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若${log_a}\frac{4}{5}<1$,则实数a的取值范围是(  )
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})$∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程lgx=4-x的根x∈(k,k+1),k∈Z,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.给出下列命题:
(1)函数$f(x)=\root{3}{{{x^4}-{x^3}}}$和$g(x)=x•\root{3}{x-1}$是同一个函数;
(2)若函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x+3)$,则函数f(x)的单调递减区间是[2,+∞);
(3)对于函数f(x),x∈R,“y=|f(x)|的图象关于y轴对称”“是y=f(x)是奇函数”的必要不充分条件;
(4)已知函数f(x)=a|log2x|+1(a≠0),定义函数$F(x)=\left\{{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}}\right.$,则函数F(x)是偶函数且当a>0时,函数y=F(x)-2有四个零点.
其中正确命题的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:y-3=k(x+1)必经过定点(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法错误的是(  )
A.如果一条直线的两点在一个平面内,那么这条直线在这个平面内
B.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补
C.两条相交直线可以确定一个平面,两条平行直线可以确定一个平面
D.底面是正三角形的三棱锥是正三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列给出的各组对象中,不能成为集合的是(  )
A.接近2的所有数B.方程x2-1=0的所有实数根
C.所有的等边三角形D.小于10的所有自然数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.log0.32.1<3-0.3<2-0.3<log0.40.3
B.log0.32.1<2-0.3<3-0.3<log0.40.3
C.log0.40.3<log0.32.1<3-0.3<2-0.3
D.log0.32.1<2-0.3<log0.40.3<3-0.3

查看答案和解析>>

同步练习册答案