精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).

【答案】
(1)解:由△MOF是等腰直角三角形,得c2=b2=4,a2=8,

故椭圆方程为: =1.


(2)证明:

①若直线AB的斜率存在,设AB的方程为:y=kx+m,依题意得m≠±2,

设A(x1,y1),B(x2,y2),

,得(1+2k2)x2+4kmx+2m2﹣8=0,

由已知 k1+k2=8,可得

所以 ,即

所以 ,整理得

故直线AB的方程为 ,即y=k( )﹣2.

所以直线AB过定点( ).

②若直线AB的斜率不存在,设AB方程为x=x0

设A(x0,y0),B(x0,﹣y0),

由已知 ,得

此时AB方程为 ,显然过点( ).

综上,直线AB过定点( ).


【解析】(1)由△MOF是等腰直角三角形,得c2=b2=4,再根据a2=b2+c2可求得a;(2)分情况讨论:①当直线AB的斜率存在时,设AB的方程为:y=kx+m,联立直线AB方程与椭圆方程消掉y得x的二次方程,由韦达定理及k1+k2=8可得关于k,m的关系式,消m代入直线AB方程可求得定点坐标;②若直线AB的斜率不存在,设AB方程为x=x0 , 由已知可求得AB方程,易验证其过定点;
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一个几何体的三视图如图所示,这个几何体可能是一个( )

A. 棱台 B. 棱锥 C. 棱柱 D. 圆台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ﹣ )=a.
(1)判断动点A的轨迹的形状;
(2)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:

分组

等待时间(分钟)

人数

第一组

[0,5)

10

第二组

[5,10)

a

第三组

[10,15)

30

第四组

[15,20)

10


(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在x=1处取得极值.
(1)求函数y=f(x)的单调区间;
(2)当x∈[1,+∞)时,f(x)≥ 恒成立,求实数m的取值范围;
(3)当n∈N* , n≥2时,求证:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个质数构成公差为的等差数列,且.求证

(1)是质数时,

(2)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,则{an}的前50项的和为

查看答案和解析>>

同步练习册答案