【题目】下面给出的命题中:
(1)“双曲线的方程为”是“双曲线的渐近线为”的充分不必要条件;
(2)“”是“直线与直线互相垂直”的必要不充分条件;
(3)已知随机变量服从正态分布,且,则;
(4)已知圆,圆,则这两个圆有3条公切线.
其中真命题的个数为( )
A. 1 B. 2 C. 3 D. 4
【答案】A
【解析】
(1)利用双曲线的方程进行判断;(2)由两直线垂直与系数的关系求出m值判断;(3)求出P(ξ>2)=0.1判断;(4)根据两圆相交判断.
(1)“双曲线的方程为”,则有双曲线的渐近线为;反之双曲线的渐近线为,则双曲线的方程为,故命题不正确;
(2)直线(m+2)x+my+1=0与直线(m﹣2)x+(m+2)y﹣3=0互相垂直(m+2)(m﹣2)+m(m+2)=0,即m=﹣2或m=1.∴“m=﹣2”是“直线(m+2)x+my+1=0与直线(m﹣2)x+(m+2)y﹣3=0互相垂直”的充分不必要条件,故(2)错误;
(3)随机变量ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.1,故(3)错误;
(4)圆C1:x2+y2+2x=0化为(x+1)2+y2=1,圆C2:x2+y2﹣1=0化为x2+y2=1,两圆的圆心距d=1,小于两半径之和,两圆相交,∴这两个圆恰有两条公切线,故(4)错误.
∴正确的命题是1个.
故答案为:A.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当 时,求f(x)的最值;
(Ⅱ)若 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的函数f(x)对任意x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足(x﹣2)f′(x)>0,则当2<a<4时,有( )
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方向向量为v=(1, )的直线l过点(0,﹣2 )和椭圆C: =1(a>b>0)的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(﹣2,0)的直线m交椭圆C于点M、N,满足 = .cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x,y满足约束条件 ,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij= ,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1 , A2 , A3 , …,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2 . 其中正确的判断是( )
A.①②
B.①③
C.②③
D.③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(1)任选1名下岗人员,求该人参加过培训的概率;
(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数给出定义:
设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”,
某同学经过探究发现:任何一个三次函数都有“拐点”:任意一个三次函数都有对称中心,且“拐点”就是对称中心,给定函数,请根据上面探究结果:计算____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1:, 曲线C2:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. 并在两种坐标系中取相同的单位长度。
(1)写出曲线C1,C2的极坐标方程;
(2)在极坐标系中,已知点A是射线l:与C1的交点,点B是l与C2的异于极点的交点,当在区间上变化时,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com