精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ,g(x)=lnx+ (a>0).
(1)求函数f(x)的极值;
(2)若x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,求a的取值范围.

【答案】
(1)解:f′(x)= =

令f′(x)=0,解得x=0,2.

列表如下:

x

(﹣∞,0)

0

(0,2)

2

(2,+∞)

f′(x)

0

+

0

f(x)

单调递减

极小值

单调递增

极大值

单调递减

可知:当x=0时,函数f(x)取得极小值,f(0)=0.当x=2时,函数f(x)取得极大值,f(2)=


(2)解:x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立,[g(x)]min≤[f(x)]max,x∈(0,+∞).

由(1)可得:[f(x)]max=f(2)=

g′(x)= = (x>0,a>0).

可知:当x=a时,函数g(x)取得极小值即最小值,

∴g(a)=lna+1≤

∴0<a≤

因此a的取值范围是


【解析】(1)f′(x)= ,令f′(x)=0,解得x=0,2.列表如下,即可得出极值.(2)x1、x2∈(0,+∞),使得g(x1)≤f(x2)成立[g(x)]min≤[f(x)]max,x∈(0,+∞).由(1)可得:[f(x)]max=f(2)= .再利用导数研究函数g(x)的单调性即可得出极小值即最小值.
【考点精析】通过灵活运用函数的极值与导数和函数的最大(小)值与导数,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知和定点,由外一点引切线,切点为,且满足.(1)求实数间满足的等量关系;

(2)求线段长的最小值;

(3)若以为圆心所作的有公共点,试求半径取最小值时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若规定E={a1 , a2 , …,a10}的子集{at1 , at2 , …,ak}为E的第k个子集,其中 ,则E的第211个子集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ax (a1)

(1)判断函数f(x)(1,+∞)上的单调性,并证明你的判断;

(2)a3,求方程f(x)0的正根(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为的半圆形(为圆心)铝皮上截取一块矩形材料其中在直径上,点在圆周上.

(1)设将矩形的面积表示成的函数,并写出其定义域;

(2)怎样截取,才能使矩形材料的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函数的零点;

(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0 , h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3﹣3x2+2,则f( )+f( )+…+f( )+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个服装店经营某种服装,在某周内获纯利y()与该周每天销售这些服装件数x之间有如下一组数据:

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

已知280 yi3 487

(1)

(2)求纯利y与每天销售件数x之间的回归直线方程;

(3)每天多销售1件,纯利y增加多少元?

查看答案和解析>>

同步练习册答案