精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
①AC⊥BD;②△ACD是等边三角形;③AC与平面BCD成45°角;④AB与CD所成的角为60°.
其中命题正确的编号是
①②③④
①②③④
.(写出所有真命题的编号)
分析:作出此直二面角的图象,由图形中所给的位置关系对四个命题逐一判断,即可得出正确结论.
解答:解:作出如图的图象,其中A-BD-C=90°,E是BD的中点,可以证明出∠AED=90°即为此直二面角的平面角
对于命题①,由于BD⊥面AEC,故AC⊥BD,此命题正确;
对于命题②,在等腰直角三角形AEC中可以解出AC等于正方形的边长,故△ACD是等边三角形,此命题正确;
对于命题③AB与平面BCD所成的线面角的平面角是∠ABE=45°,故AB与平面BCD成45°的角正确;
对于命题④可取AD中点F,AC的中点H,连接EF,EH,FH,由于EF,FH是中位线,可证得其长度为正方形边长的一半,而EH是直角三角形的中线,其长度是AC的一半即正方形边长的一半,故△EFH是等边三角形,由此即可证得AB与CD所成的角为60°;
综上知①②④是正确的
故答案为:①②③④.
点评:本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为
2
π
3
2
π
3

查看答案和解析>>

科目:高中数学 来源:福州一中高三数学模拟试卷(一)(文科) 题型:013

边长为1的正方形ABCD沿对其角线BD将△BDC折起得到三棱锥C-ABD,若三棱锥C-ABD的体积为,则直线BC与平面ABD所成角的正弦值为

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为________.

查看答案和解析>>

科目:高中数学 来源:2012年四川省成都市石室中学高考数学一模试卷(理科)(解析版) 题型:解答题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为   

查看答案和解析>>

科目:高中数学 来源:2012年四川省成都市石室中学高考数学一模试卷(文科)(解析版) 题型:解答题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为   

查看答案和解析>>

同步练习册答案