【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 30 |
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.
(Ⅰ)求椭圆的方程;
(Ⅱ)若与轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.
(1)求f()+g()的值;
(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①点P(-1,4)到直线3x+4y =2的距离为3.
②过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为.
③命题“x∈R,使得x2﹣2x+1<0”的否定是真命题;
④“x ≤1,且y≤1”是“x + y ≤2”的充要条件.
其中不正确命题的序号是 _______________ .(把你认为不正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某批零件共160个,其中一级品有48人,二级品有64个,三级品有32个,等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图.
(2)求回归方程.
(3)试预测广告费支出为10百万元时,销售额多大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:①;②26-7;③,其中正确的结论是( )
A. 仅有① B. 仅有② C. ②与③ D. 仅有③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com