【题目】某气象站统计了4月份甲、乙两地的天气温度(单位),统计数据的茎叶图如图所示,
(1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;
(2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于,则被称为“甲、乙两地往来温度适宜天气”,求“甲、乙两地往来温度适宜天气”的概率.
科目:高中数学 来源: 题型:
【题目】设数列满足,其中A,B是两个确定的实数,
(1)若,求的前n项和;
(2)证明:不是等比数列;
(3)若,数列中除去开始的两项外,是否还有相等的两项,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左顶点为,右焦点为,斜率为1的直线与椭圆交于,两点,且,其中为坐标原点.
(1)求椭圆的标准方程;
(2)设过点且与直线平行的直线与椭圆交于,两点,若点满足,且与椭圆的另一个交点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018年GDP总量(万亿元)的折线图.
注:年份代码1~9分别对应年份2010~2018.
(1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.
附注:参考数据:,,,.
参考公式:相关系数;
回归方程中斜率和截距的最小二乘法估计公式分别为,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实数a,b满足ab>0且a≠b,由a、b、、按一定顺序构成的数列( )
A. 可能是等差数列,也可能是等比数列
B. 可能是等差数列,但不可能是等比数列
C. 不可能是等差数列,但可能是等比数列
D. 不可能是等差数列,也不可能是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家大力提倡科技创新,某工厂为提升甲产品的市场竞争力,对生产技术进行创新改造,使甲产品的生产节能降耗.以下表格提供了节能降耗后甲产品的生产产量(吨)与相应的生产能耗(吨)的几组对照数据.
(吨) | ||||
(吨) |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(,)
(2)已知该厂技术改造前生产吨甲产品的生产能耗为吨,试根据(1)求出的线性回归方程,预测节能降耗后生产吨甲产品的生产能耗比技术改造前降低多少吨?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合是由一些函数组成,满足如下性质:①对任意,均存在反函数,且;②对任意,方程均有解;③对任意、,若函数为定义在上的一次函数,则.
(1)若,,均在集合中,求证:函数;
(2)若函数()在集合中,求实数的取值范围;
(3)若集合中的函数均为定义在上的一次函数,求证:存在一个实数,使得对一切,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n是两条不同直线,α,β,γ是三个不同平面,给出下列四个命题:
①若m⊥α,n⊥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,n∥α,则m∥n;④若m⊥α,m∥β,则α⊥β.
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com