【题目】已知函数f(x)=lg(1+x)+lg(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.
【答案】
(1)解:由 ,求得﹣1<x<1,
∴函数f(x)的定义域为(﹣1,1)
(2)解:定义域关于原点对称,对于任意的x∈(﹣1,1),
∵f(﹣x)=lg(1﹣x)+lg(1+x)=f(x),∴f(x)为偶函数
(3)解:f(x)=lg[(1+x)(1﹣x)]=lg(1﹣x2).
∵t=1﹣x2 ≤1,∴y≤lg1=0,
∴函数f(x)的值域为(﹣∞,0]
【解析】(1)由 ,求得函数f(x)的定义域.(2)根据定义域关于原点对称,再根据f(﹣x)=f(x),可得f(x)为偶函数.(3)化简f(x)为lg(1﹣x2),再根据t=1﹣x2 ≤1,求得f(x)≤lg1=0,由此求得函数f(x)的值域.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(1)证明数列{}是等差数列,并求出数列{an}的通项公式;
(2)记Sn=a1a2+a2a3+…+anan+1,求Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线(为参数, ),其中,在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.
(Ⅰ)求与交点的直角坐标系;
(Ⅱ)若与相交于点,与相交于点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次运动会中甲、乙两名射击运动员决赛中各射击十次的成绩(环)如下:
(1)用茎叶图表示甲、乙两个人的成绩;
(2)根据茎叶图分析甲、乙两人的成绩;
(3)计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较稳定.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某蔬菜商店买进的土豆(吨)与出售天数(天)之间的关系如表所示:
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)请根据表中数据在所给网格中绘制散点图;
(Ⅱ)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程(其中保留2位有效数字);
(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店买进土豆40吨,则预计可以销售多少天(计算结果保留整数)?
附: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数y=f(x),x∈D(定义域),若存在常数C,对于任意x1∈D,存在唯一的x2∈D,使得 =C,则称函数f(x)在D上的“均值”为C,已知f(x)=lgx,x∈[10,100],则函数f(x)在[10,100]上的均值为( )
A.
B.
C.
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若从, , , 四个数中任取的一个数, 是从, , 三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com