【题目】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 ,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数ξ的分布列和数学期望.
【答案】
(1)解:用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,
且P(A)=P(B)=P(C)= .
至少有1人面试合格的概率是 .
(2)解:ξ的可能取值为0,1,2,3,
=
= .
=
= .
P(ξ=2)=P( BC)=
.
所以,ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P |
ξ的期望 =1
【解析】(1)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)= ,分析可得“至少有1人面试合格”与“三人面试全不合格”为对立事件,由对立事件的概率,计算可得答案;(2)根据题意,易得 ξ 的可能取值为0,1,2,3,分别计算其概率可得分布列,由期望的计算公式,结合分布列计算可得ξ的期望.
科目:高中数学 来源: 题型:
【题目】已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形, .
(1)求证: 平面;
(2)线段上是否存在一点,使得 ?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ( )
①平均数; ②标准差; ③平均数且标准差;
④平均数且极差小于或等于2;⑤众数等于1且极差小于或等于4。
A. ①② B. ③④ C. ③④⑤ D. ④⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直线l:3x-y-1=0上求点P和Q,使得
(1)点P到点A(4,1)和B(0,4)的距离之差最大;
(2)点Q到点A(4,1)和C(3,4)的距离之和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知, ,且,记动点的轨迹为.
(Ⅰ)求曲线方程;
(Ⅱ)过点的动直线与曲线相交两点,试问在轴上是否存在与点不同的定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,CA=CD= AB=1, =1,sin∠BCD= .
(1)求BC的长;
(2)求四边形ABCD的面积;
(3)求sinD的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点 ,且与定直线相切,动圆圆心的轨迹方程为,直线过点交曲线于两点.
(1)若交轴于点,求的取值范围;
(2)若的倾斜角为,在上是否存在点使为正三角形?若能,求点的坐标;若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com