精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是 ,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数ξ的分布列和数学期望.

【答案】
(1)解:用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,

且P(A)=P(B)=P(C)=

至少有1人面试合格的概率是


(2)解:ξ的可能取值为0,1,2,3,

=

=

=

=

P(ξ=2)=P( BC)=

所以,ξ的分布列是

ξ

0

1

2

3

P

ξ的期望 =1


【解析】(1)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)= ,分析可得“至少有1人面试合格”与“三人面试全不合格”为对立事件,由对立事件的概率,计算可得答案;(2)根据题意,易得 ξ 的可能取值为0,1,2,3,分别计算其概率可得分布列,由期望的计算公式,结合分布列计算可得ξ的期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形, .

(1)求证: 平面

(2)线段上是否存在一点,使得 ?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是连续7天每天新增感染人数不超过5,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ( )

平均数标准差平均数且标准差

平均数且极差小于或等于2众数等于1且极差小于或等于4

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直线l:3x-y-1=0上求点P和Q,使得

(1)点P到点A(4,1)和B(0,4)的距离之差最大;

(2)点Q到点A(4,1)和C(3,4)的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知 ,且,记动点的轨迹为.

(Ⅰ)求曲线方程;

(Ⅱ)过点的动直线与曲线相交两点,试问在轴上是否存在与点不同的定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项Sn=(﹣1)n ,若存在正整数n,使得(an1﹣p)(an﹣p)<0成立,则实数p的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=qan+2q﹣2(q为常数),若a3 , a4 , a5∈{﹣5,﹣2,﹣1,7},则a1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,CA=CD= AB=1, =1,sin∠BCD=

(1)求BC的长;
(2)求四边形ABCD的面积;
(3)求sinD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点 且与定直线相切,动圆圆心的轨迹方程为直线过点交曲线两点.

1)若轴于点的取值范围;

(2)若的倾斜角为上是否存在点使为正三角形?若能,求点的坐标;若不能,说明理由.

查看答案和解析>>

同步练习册答案