精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为$\sqrt{3}$,则此时△ABC的形状为等腰三角形.

分析 由$\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,结合sinC>0,化简可得sinC=$\frac{\sqrt{3}}{2}$,由a+b=4,利用基本不等式可得ab≤4,(当且仅当a=b=2成立),由△ABC的面积的最大值S△ABC=$\frac{1}{2}absinC$≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,即可解得a=b=2,从而得解△ABC的形状为等腰三角形.

解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=4,可得:4$≥2\sqrt{ab}$,解得:ab≤4,(当且仅当a=b=2成立)
∵△ABC的面积的最大值S△ABC=$\frac{1}{2}absinC$≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∴a=b=2,
∴则此时△ABC的形状为等腰三角形.
故答案为:等腰三角形.

点评 本题主要考查了正弦定理,三角形面积公式,基本不等式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量.
(1)求证:|$\overrightarrow{a}•\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|;
(2)应用(1)的结论求函数y=$\frac{1+sinx}{2-cosx}$的最大值.(注:第2小题未用向量法不给分,要用到向量数量积相关概念)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2asinx•cosx+2cos2x+1,$f(\frac{π}{6})=4$,
(1)求实数a的值;
(2)求函数f(x)在$x∈[-\frac{π}{4},\frac{π}{4}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:x-2y-7=0.求:
(1)过点(2,1)且与l平行的直线l1方程.
(2)过点(2,1)与l垂直的直线l2方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f(x)的定义域为(-2,2),则f(2x-3)的定义域是($\frac{1}{2}$,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow a$=(-2,2),$\overrightarrow b$=(5,k),若|$\overrightarrow{a}$+$\overrightarrow{b}$|=5则k的值为:2或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{AB}$=(-3,a),$\overrightarrow{AC}$=(1-a,2),若A,B,C三点共线,则a=(  )
A.3或-2B.2或-3C.$\frac{3}{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.复数计算:$\frac{2}{1-i}$=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若a,$\sqrt{3}$+1是方程x2-(b+$\sqrt{3}$-1)x+$\sqrt{3}$b=b的两根,且2cos(A+B)=1.
(Ⅰ)求角C的度数;
(Ⅱ)求边c的长;
(Ⅲ)求△ABC边AB上的高CD的长.

查看答案和解析>>

同步练习册答案