精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=2py(p>0),定点M(0,5),直线l:y=
p
2
与y轴交于点F,O为原点,若以OM为直径的圆恰好过l与抛物线C的交点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于A′,B′,求证:抛物线C分别过A′,B′两点的切线的交点Q在一条定直线上运动.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用定点M(0,5),直线l:y=
p
2
与y轴交于点F,O为原点,以OM为直径的圆恰好过l与抛物线C的交点,建立方程,求出p,即可求抛物线C的方程;
(Ⅱ)求出过点A′的切线方程、过点B′的切线的方程,可得yQ=
4
x1x2
,直线y=kx+5代入抛物线方程,利用韦达定理可得结论.
解答: (Ⅰ)解:∵定点M(0,5),直线l:y=
p
2
与y轴交于点F,O为原点,以OM为直径的圆恰好过l与抛物线C的交点,
p2=
p
2
(5-
p
2
)

∴p=2,
∴抛物线C的方程为x2=4y;
(Ⅱ)证明:由题意,直线AB的斜率一定存在,设方程为y=kx+5,
设A(x1,y1),B(x2,y2),A′(x0,y0),则
∵A,F,A′共线,
∴x1(y0-1)+x0(1-y1)=0,(x0-x1)(x0x1+4)=0,
∵x0≠x1,∴x0=-
4
x1

∴A′(-
4
x1
4
x12
),
同理B′(-
4
x2
4
x22
).
∵y′=
1
2
x

∴过点A′的切线的斜率为-
2
x1
,切线方程为y=-
2
x1
x-
4
x12

同理过点B′的切线的方程为y=-
2
x2
x-
4
x22

联立得yQ=
4
x1x2

y=kx+5
x2=4y
可得x2-4kx-20=0,
∴x1x2=-20,
∴yQ=
4
x1x2
=-
1
5
,即Q在一条定直线y=-
1
5
上运动.
点评:本题考查抛物线的方程,考查抛物线的切线方程,考查直线与抛物线的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知点E(-1,0)和F(1,0),圆E是以E为圆心,半径为2
2
的圆,点P是圆E上任意一点,线段FP的垂直平分线l和半径EP所在的直线交于点Q.
(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程T;
(Ⅱ)已知M,N是曲线T上的两点,若曲线T上存在点P,满足
OM
+
ON
OP
(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

天府新区的战略定位是以城乡一体化、全面现代化、充分引进国际化为引领,并以现代制造业为主,高端服务业集聚,宜业宜商宜居的国际化现代新城区,为引进优秀厂家,某企业对16家厂家根据地域分为两组,分别由A、B两组评委对各项指标进行综合评比打分,两个组队对16家厂家评比最后综合得分的茎叶图如图所示,其中茎为十位数,叶为个位数,若某厂家总和得分高于16家厂家的平均分则确定为优秀厂家.
(Ⅰ)若在确定为优秀厂家的厂家中随机抽取2家进行复查,求抽取的2家进行复查的分别是A、B组评定出的优秀厂家各1个的概率;
(Ⅱ)若从A、B两组评定出确定为优秀厂家中随机选取3家人户,记选取的3家来自B组评定出的优秀厂家数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲线C.
(Ⅰ)求曲线C方程;
(Ⅱ)点A为直线l:x-y-2=0上任意一点,过A作曲线C的切线,切点分别为P、Q,△APQ面积的最小值及此时点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上的顶点为A(0,5),离心率为
3
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线y=-4交椭圆E于点B,C两点(点B在点C的左侧),点D在椭圆上,且满足
BD
=m
BA
+n
BC
(m,n为实数),求m+n的最大值以及对应点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
x+2
,x∈(
1
2
,1]
-
1
2
x+
1
4
,x∈[0,
1
2
]
g(x)=asin(
π
3
x+
2
)-2a+2(a>0)
,给出下列结论:
①函数f(x)的值域为[0,
1
3
]

②函数g(x)在[0,1]上是增函数;
③对任意a>0,方程f(x)=g(x)在[0,1]内恒有解;
④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是
5
9
≤a≤
4
5

其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5名同学排成一列,某个同学不排排头的排法种数为
 
(用数字作答).

查看答案和解析>>

同步练习册答案