【题目】在极坐标系中,射线l:θ= 与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2= ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy (Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;
(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求 的取值范围.
【答案】解:(Ⅰ)射线l:θ= 与圆C:ρ=2交于点A(2, ),点A的直角坐标( ,1); 椭圆Γ的方程为ρ2= ,直角坐标方程为 +y2=1,参数方程为 (θ为参数);
(Ⅱ)设F( cosθ,sinθ),
∵E(0,﹣1),
∴ =(﹣ ,﹣2), =( cosθ﹣ ,sinθ﹣1),
∴ =﹣3cosθ+3﹣2(sinθ﹣1)= sin(θ+α)+5,
∴ 的取值范围是[5﹣ ,5+ ]
【解析】(Ⅰ)射线l:θ= 与圆C:ρ=2交于点A(2, ),可得点A的直角坐标;求出椭圆直角坐标方程,即可求出椭圆Γ的参数方程;(Ⅱ)设F( cosθ,sinθ),E(0,﹣1),求出相应的向量,即可求 的取值范围.
科目:高中数学 来源: 题型:
【题目】(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用 (单位:元)关于月用电量 (单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求 的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记 为该居民用户1月份的用电费用,求 的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题:
①函数是偶函数,但不是奇函数;
②方程的有一个正实根,一个负实根,;
③是定义在上的奇函数,当时,,则 时,
④函数的值域是.
其中正确命题的序号是_____(把所有正确命题的序号都写上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形,且平面ABEF⊥平面ABCD,M为AF的中点, (I)求证:AC⊥BM;
(II)求异面直线CE与BM所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
井号I | 1 | 2 | 3 | 4 | 5 | 6 |
坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的 的值( 精确到0.01)相比于(1)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井? (参考公式和计算结果: )
(3)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com