精英家教网 > 高中数学 > 题目详情

【题目】ABC中,已知AB=2,AC=3,BC=

(1)求角A的大小;

(2)求cos(B﹣C)的值

【答案】(1)(2)

【解析】

(1)利用余弦定理求得的值,由此求得的大小.(2)利用正弦定理求得的值,利用同角三角函数的基本关系式求得的值,利用二倍角公式求得的值,再利用两角差的余弦公式求得的值.

解:

(1)由余弦定理得:cosA

因为A(0,π),所以A

(2)由正弦定理得:,所以sin C

又因为ABBC,所以CA

0<C,所以cosC

所以sin2C=2 sinC cosC=2··

cos2C=2cos2C-1=2()2-1=

因为ABCπA.所以BC,所以BC

所以cos(B-C)=cos(-2C)=coscos2C+sinsin2C=(-·

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙二人同时从地赶往地,甲先骑自行车到两地的中点再改为跑步;乙先跑步两地的中点再改为骑自行车,最后两人同时到达.甲骑自行车比乙骑自行车的速度快,并且两人骑车的速度均大于跑步的速度.现将两人离开地的距离与所用时间的函数关系用图像表示如下,则这四个函数图像中,甲、乙两个运动函数关系的分别是(

A.①、②B.①、④C.②、③D.③、④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面,且的中点,上,且.

1)求证:平面平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数在区间上的最值;

(Ⅱ)若是函数的两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,APCD,ADBC,AB=BC=1,AD=2,E,F分别为AD,PC的中点.求证:

(1)AP∥平面BEF;

(2)平面BEF⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在促销期间规定:商场内所有商品按标价的80%出售,同时当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:

消费金额(元)的范围

……

获得奖券的金额(元)

28

58

88

128

……

根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28.于是,该顾客获得的优惠额为:.设购买商品得到的优惠率.试问:

1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?

2)当商品的标价为元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;

3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过30%的优惠率?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲乙两地某月12时的气温状况,选取该月5天中12时的气温数据(单位:)制成如图所示的茎叶图,考虑以下结论:

①甲地该月12时的平均气温低于乙地该月12时的平均气温;

②甲地该月12时的平均气温高于乙地该月12时的平均气温;

③甲地该月12时的气温的标准差小于乙地该月12时的气温的标准差;

④甲地该月12时的气温的标准差大于乙地该月12时的气温的标准差.

其中根据茎叶图能得到的统计结论的编号为(

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数,定义的导函数的导函数,经过讨论发现命题:“一定存在实数,使得成立”为真,请你根据这一结论判断下列命题:

①一定存在实数,使得成立;②一定存在实数,使得成立;③若,则;④若存在实数,且满足:,则函数上一定单调递增,所有正确的序号是( )

A. ①② B. ①③ C. ②③ D. ②④

查看答案和解析>>

同步练习册答案