精英家教网 > 高中数学 > 题目详情

如图,二次函数)的图象与反比例函数图象相交于点,已知点的坐标为,点在第三象限内,且的面积为为坐标原点)

① 求实数的值;
② 求二次函数)的解析式;
③ 设抛物线与轴的另一个交点为点为线段

解:①

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数的图象相交于分别是的图象在两点的切线,分别是轴的交点.
(1)求的取值范围;
(2)设为点的横坐标,当时,写出为自变量的函数式,并求其定义域和值域;
(3)试比较的大小,并说明理由(是坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求的解析式及定义域。
(Ⅱ)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为区间[-1,1].
(1)求g(x)的解析式;
(2)判断g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台)
(1)把利润表示为年产量的函数;
(2)年产量多少时,企业所得的利润最大?
(3)年产量多少时,企业才不亏本?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上为增函数,且,为常数,.
(1)求的值;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
已知是偶函数.
(Ⅰ)求实常数的值,并给出函数的单调区间(不要求证明);
(Ⅱ)为实常数,解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值

(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ) 讨论函数的单调性;
(Ⅱ)若时,恒有试求实数的取值范围;
(Ⅲ)令
试证明:

查看答案和解析>>

同步练习册答案