精英家教网 > 高中数学 > 题目详情
9.已知ω>0,函数f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上递增,则ω的范围为$({0,\frac{3}{2}}]$.

分析 由三角函数的图象:知在[-$\frac{π}{2ω}$,0]上是单调增函数,结合题意得$\frac{π}{2ω}$$≥\frac{π}{3}$,从而求出ω的取值范围.

解答 解:由三角函数f(x)=2sinωx的图象:
知在[-$\frac{π}{2ω}$,0]上是单调增函数,
结合题意得$\frac{π}{2ω}$$≥\frac{π}{3}$,
从而$0<ω≤\frac{3}{2}$,即为ω的取值范围.
故答案为:$({0,\frac{3}{2}}]$.

点评 本题主要考查三角函数的单调性,本题巧妙地运用了正弦函数的单调性,给出了简捷的计算,解题时应注意把数形结合思想的灵活应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知ab>0,bc>0,则直线ax+by=c通过(  )
A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过曲线y=f(x)=$\frac{x}{1-x}$图象上一点(2,-2)及邻近一点(2+△x,-2+△y)作割线,则当△x=0.5时割线的斜率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于x的方程x2+(a+2b)x+3a+b+1=0的两个实根分别在区间(-1,0)和(0,1)上,则a+b的取值范围为(  )
A.(-$\frac{3}{5}$,$\frac{1}{5}$)B.(-$\frac{2}{5}$,$\frac{1}{5}$)C.(-$\frac{3}{5}$,-$\frac{2}{5}$)D.(-$\frac{1}{5}$,$\frac{1}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从甲、乙两名运动员的若干次训练成绩中随机抽取6次,分别为
甲:7.7,7.8,8.6,8.7,9.3,9.5
乙:7.6,8.2,8.5,8.6,9.2,9.5
(1)根据以上的茎叶图,对甲、乙运动员的成绩作比较,写出两个统计结论;
(2)从甲、乙运动员6次成绩中各随机抽取1次成绩,求甲、乙运动员的成绩至少有一个高于8.5分的概率.
(3)经过对甲、乙运动员若干次成绩进行统计,发现甲运动员成绩均匀分布在[7,10]之间,乙运动员成绩均匀分布在[7.5,9.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.能表示图中阴影部分的二元一次不等式组是(  )
A.$\left\{\begin{array}{l}{0≤y≤1}\\{2x-y+2≤0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≤1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{0≤y≤1}\\{2x-y+2≥0}\\{x≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{y≤1}\\{x≤0}\\{2x-y+2≤0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等差数列{an}中,前4项的和为40,后4项的和为80,所有项的和为210,则项数n=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角α是第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)}{tan(π+α)sin(-π-α)}$.
(1)化简f(α);
(2)若cos(α+$\frac{π}{4}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知an=$\frac{3}{2n-5}(n∈{N_+})$,记数列{an}的前n项和为Sn,即Sn=a1+a2+…+an,则使Sn≤0的n的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案