分析 由三角函数的图象:知在[-$\frac{π}{2ω}$,0]上是单调增函数,结合题意得$\frac{π}{2ω}$$≥\frac{π}{3}$,从而求出ω的取值范围.
解答 解:由三角函数f(x)=2sinωx的图象:
知在[-$\frac{π}{2ω}$,0]上是单调增函数,
结合题意得$\frac{π}{2ω}$$≥\frac{π}{3}$,
从而$0<ω≤\frac{3}{2}$,即为ω的取值范围.
故答案为:$({0,\frac{3}{2}}]$.
点评 本题主要考查三角函数的单调性,本题巧妙地运用了正弦函数的单调性,给出了简捷的计算,解题时应注意把数形结合思想的灵活应用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{3}{5}$,$\frac{1}{5}$) | B. | (-$\frac{2}{5}$,$\frac{1}{5}$) | C. | (-$\frac{3}{5}$,-$\frac{2}{5}$) | D. | (-$\frac{1}{5}$,$\frac{1}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{0≤y≤1}\\{2x-y+2≤0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{y≤1}\\{2x-y+2≤0}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{0≤y≤1}\\{2x-y+2≥0}\\{x≤0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{y≤1}\\{x≤0}\\{2x-y+2≤0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com