分析 利用向量共线定理可得:n+2m=1,再利用“乘1法”与基本不等式的性质即可得出.
解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,
∴1-n-2m=0,
化为n+2m=1,
又m>0,n>0,
则$\frac{1}{m}+\frac{1}{n}$=(n+2m)$(\frac{1}{m}+\frac{1}{n})$=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$,当且仅当n=$\sqrt{2}$m=$\sqrt{2}$-1时取等号.
故答案为:3+2$\sqrt{2}$.
点评 本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | EH∥FG | B. | 四边形EFGH是矩形 | ||
C. | Ω是棱柱 | D. | 四边形EFGH可能为梯形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-2,-1} | B. | {2} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com