精英家教网 > 高中数学 > 题目详情

【题目】已知函数 有两个极值点x1 , x2 , 且x1<x2 , 记点M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直线MN的方程;
(Ⅱ)证明:线段MN与曲线y=f(x)有且只有一个异于M、N的公共点.

【答案】解:(Ⅰ)令f'(x)=x2﹣2x﹣3=0,解得x=﹣1或x=3, 且f(x)在区间(﹣∞,﹣1),(3,+∞)上单调递增,在区间(﹣1,3)上单调递减,
∴x1=﹣1, ,x2=3,f(3)=﹣9,即 ,N(3,﹣9),
∴直线MN的方程为 ,化简得
(Ⅱ)设g(x)=f(x) =
则线段MN与曲线y=f(x)的公共点即g(x)在区间[﹣1,3]上的零点.
=0,解得
且g(x)在区间 上单调递增,
在区间( 上单调递减.
∴由 可得 =1>g(2)=﹣1
,∴g(x)在区间 上有且仅有有一个零点.
,有0=g(﹣1)<g(x),∴g(x)在 上无零点;
时,有g(x)<g(3)=0,∴g(x)在 上无零点;
综上,g(x)在区间(﹣1,3)上有且仅有一个零点.
所以线段MN与曲线y=f(x)有且只有一个异于M、N的公共点
【解析】(Ⅰ)求出导函数令f'(x)=x2﹣2x﹣3=0,解得x=﹣1或x=3,判断函数的单调性求出MN,然后求解直线方程.(Ⅱ)设g(x)=f(x) ,推出线段MN与曲线y=f(x)的公共点即g(x)在区间[﹣1,3]上的零点.令 =0,通过判断函数的极值判断函数的单调性,推出结果即可.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列关于棱锥、棱台的说法,其中不正确的是( )
A.棱台的侧面一定不会是平行四边形
B.棱锥的侧面只能是三角形
C.由四个面围成的封闭图形只能是三棱锥
D.棱锥被平面截成的两部分不可能都是棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)在 上的最大值与最小值;
(2)已知 ,x0∈( ),求cos4x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的比例

第1组

[18,28)

5

0.5

第2组

[28,38)

18

a

第3组

[38,48)

27

0.9

第4组

[48,58)

x

0.36

第5组

[58,68)

3

0.2


(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1中,E,F,H分别为A1B1 , B1C1 , CC1的中点.
(Ⅰ)证明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一点G,使得AG∥平面BEF?若存在,求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:

气温(℃)

17

14

11

﹣2

用电量(度)

23

35

39

63

由表中数据得到线性回归方程 =﹣2x+a,当气温为﹣5℃时,预测用电量约为 ( )
A.38度
B.50度
C.70度
D.30度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个生物研究性学习小组,为了研究平均气温与一天内某豆类胚芽生长之间的关系,他们分别记录了4月6日至4月11日的平均气温x(℃)与该豆类胚芽一天生长的长度y(mm),得到如下数据:

日期

4月6日

4月7日

4月8日

4月9日

4月10日

4月11日

平均气温x(℃)

10

11

13

12

8

6

一天生长的长度y(mm)

22

25

29

26

16

12

该小组的研究方案是:先从这六组数据中选取6日和11日的两组数据作为检验数据,用剩下的4组数据即:7日至10日的四组数据求出线性回归方程.
(1)请按研究方案求出y关于x的线性回归方程 = x+
(2)用6日和11日的两组数据作为检验数据,并判断该小组所得线性回归方程是否理想.(若由线性回归方程得到的估计数据与所选的检验数据的误差不超过1mm,则认为该方程是理想的)
参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中, = +
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点, 交于点P且 =x +y (x,y∈R),求x+y的值.

查看答案和解析>>

同步练习册答案