精英家教网 > 高中数学 > 题目详情

【题目】给出四个函数:①;②;③;④,从其中任选个,则事件:“所选个函数图象有且仅有个公共点”的概率是________.

【答案】

【解析】

给出四个函数:①;②;③;④,从其中任选个,基本事件总数为,利用列举法求出“所选个函数图象有且仅有个公共点”包含的基本事件,由此能求出:“所选个函数图象有且仅有个公共点”的概率.

给出四个函数:①;②;③;④

从其中任选个,基本事件总数为

在同一直角坐标系中作出上述四个函数的图象如下图所示:

由图象可知,①②中的两个函数图象有两个交点,①③中的两个函数图象有无数个交点,①④中的两个函数图象有只有一个交点,②③中的两个函数图象有三个交点,②④中的两个函数图象只有一个交点,③④中的两个函数图象只有一个交点.

事件:“所选个函数图象有且仅有个公共点”包含的基本事件是①②,

因此,事件:“所选个函数图象有且仅有个公共点”的概率是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,平面ABCD

1)求证:平面PAD

2)在棱AB上是否存在一点F,使得平面平面PCE?如果存在,求的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且

1)求证:,并由推导的值;

2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.

3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆:的左、右焦点,且椭圆上的点到点的距离的最小值为.MN是椭圆上位于轴上方的两点,且向量与向量平行.

1)求椭圆的方程;

2)当时,求△的面积;

3)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:

数学成绩优秀(人数)

数学成绩合格(人数)

及时复习(人数)

20

4

不及时复习(人数)

10

6

1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);

2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.

参考公式:,其中为样本容量

临界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,对于任意满足,且,数列满足,其前项和为.

1)求数列的通项公式;

2)令,数列的前项和为,求证:对于任意正整数,都有

3)将数列的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:求这个新数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试判断函数的奇偶性,并说明理由;

2)若,求上的最大值;

3)若,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1求椭圆的方程;

2过点的直线,交椭圆两点,点在椭圆上,坐标原点恰为的重心,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若称封闭曲线上任意两点距离的最大值为该曲线的直径,求曲线直径”.

查看答案和解析>>

同步练习册答案