【题目】给出四个函数:①;②;③;④,从其中任选个,则事件:“所选个函数图象有且仅有个公共点”的概率是________.
【答案】
【解析】
给出四个函数:①;②;③;④,从其中任选个,基本事件总数为,利用列举法求出“所选个函数图象有且仅有个公共点”包含的基本事件,由此能求出:“所选个函数图象有且仅有个公共点”的概率.
给出四个函数:①;②;③;④,
从其中任选个,基本事件总数为,
在同一直角坐标系中作出上述四个函数的图象如下图所示:
由图象可知,①②中的两个函数图象有两个交点,①③中的两个函数图象有无数个交点,①④中的两个函数图象有只有一个交点,②③中的两个函数图象有三个交点,②④中的两个函数图象只有一个交点,③④中的两个函数图象只有一个交点.
事件:“所选个函数图象有且仅有个公共点”包含的基本事件是①②,
因此,事件:“所选个函数图象有且仅有个公共点”的概率是.
故答案为:.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.
(1)求证:平面PAD;
(2)在棱AB上是否存在一点F,使得平面平面PCE?如果存在,求的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且.
(1)求证:,并由推导的值;
(2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.
(3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,分别是椭圆:的左、右焦点,且椭圆上的点到点的距离的最小值为.点M、N是椭圆上位于轴上方的两点,且向量与向量平行.
(1)求椭圆的方程;
(2)当时,求△的面积;
(3)当时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:
数学成绩优秀(人数) | 数学成绩合格(人数) | |
及时复习(人数) | 20 | 4 |
不及时复习(人数) | 10 | 6 |
(1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);
(2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.
参考公式:,其中为样本容量
临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,对于任意满足,且,数列满足,,其前项和为.
(1)求数列、的通项公式;
(2)令,数列的前项和为,求证:对于任意正整数,都有;
(3)将数列、的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:、、、、、、、、求这个新数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.
(1)求曲线的方程;
(2)若称封闭曲线上任意两点距离的最大值为该曲线的“直径”,求曲线的“直径”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com