1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¶¨µãP£¨$\sqrt{2}$£¬1£©£¬Ö±ÏßOP½»ÍÖÔ²CÓÚµãQ£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¬ÇÒ|$\overrightarrow{OQ}$|=$\frac{b}{a}$|$\overrightarrow{OP}$|£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA£¨2£¬0£©£¬¹ýµã£¨-1£¬0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚM¡¢NÁ½µã£¬¡÷AMNµÄÃæ»ý¼ÇΪS£¬Èô¶ÔÂú×ãÌõ¼þµÄÈÎÒâÖ±Ïßl£¬²»µÈʽS¡Ü¦Ëtan¡ÏMANºã³ÉÁ¢£¬Çó¦ËµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÌâÒâÖªa2=2b2£¬Ö±ÏßOPµÄ·½³ÌΪy=$\frac{1}{\sqrt{2}}$x£¬Óë$\frac{{x}^{2}}{2{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1ÁªÁ¢¿É½âµÃ|x|=b£¬´Ó¶øÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»·ÖÖ±Ïßl´¹Ö±ÓÚxÖáʱÓëÖ±Ïßl²»´¹Ö±ÓÚxÖáʱÌÖÂÛ£¬´Ó¶ø¿ÉµÃ$\overrightarrow{QM}$•$\overrightarrow{QN}$¡Ü$\frac{17}{2}$£»´Ó¶ø»¯ºã³ÉÁ¢ÎÊÌâΪ×îÖµÎÊÌâÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡àa2=2b2£¬
ÓÉÌâÒâÖª£¬Ö±ÏßOPµÄ·½³ÌΪy=$\frac{1}{\sqrt{2}}$x£¬
Óë$\frac{{x}^{2}}{2{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1ÁªÁ¢½âµÃ£¬
|x|=b£¬
ÓÖ¡ß|$\overrightarrow{OQ}$|=$\frac{b}{a}$|$\overrightarrow{OP}$|£¬
¡à$\frac{|OQ|}{|OP|}$=$\frac{|x|}{\sqrt{2}}$=$\frac{b}{\sqrt{2}}$=$\frac{b}{a}$£¬
¡àa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»
µ±Ö±Ïßl´¹Ö±ÓÚxÖáʱ£¬x1=x2=-1£¬y1=-y2£¬${{y}_{1}}^{2}$=$\frac{1}{2}$£¬
¹Ê$\overrightarrow{QM}$=£¨x1-2£¬y1£©=£¨-3£¬y1£©£¬$\overrightarrow{QN}$=£¨-3£¬-y1£©£¬
¹Ê$\overrightarrow{QM}$•$\overrightarrow{QN}$=9-${{y}_{1}}^{2}$=$\frac{17}{2}$£¬
µ±Ö±Ïßl²»´¹Ö±ÓÚxÖáʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¬
Óë$\frac{{x}^{2}}{2}$+y2=1ÁªÁ¢Ïûy¿ÉµÃ£¨1+2k2£©x2+4k2x+2k2-2=0£¬
¹Êx1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
¹Ê$\overrightarrow{QM}$•$\overrightarrow{QN}$=£¨x1-2£©£¨x2-2£©+y1y2=£¨1+k2£©x1x2+£¨k2-2£©£¨x1+x2£©+k2+4
=$\frac{17}{2}$-$\frac{13}{2£¨1+2{k}^{2}£©}$£¼$\frac{17}{2}$£»
×ÛÉÏËùÊö£¬$\overrightarrow{QM}$•$\overrightarrow{QN}$µÄ×î´óֵΪ$\frac{17}{2}$£®
¡ß²»µÈʽS¡Ü¦Ëtan¡ÏMANºã³ÉÁ¢£¬
¼´$\frac{1}{2}$|$\overrightarrow{QM}$|•|$\overrightarrow{QN}$|sin¡ÏMAN¡Ü¦Ëtan¡ÏMANºã³ÉÁ¢£¬
ÓÖ¡ß$\overrightarrow{QM}$•$\overrightarrow{QN}$=$\frac{17}{2}$-$\frac{13}{2£¨1+2{k}^{2}£©}$£¾0£¬
¡à$\overrightarrow{QM}$•$\overrightarrow{QN}$¡Ü2¦Ëºã³ÉÁ¢£¬
¹Ê¦ËµÄ×îСֵΪ$\frac{17}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵķ½³ÌµÄÇó·¨ÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËƽÃæÏòÁ¿µÄÊýÁ¿»ýµÄÓ¦Óü°ºã³ÉÁ¢ÎÊÌ⣬ͬʱ¿¼²éÁËѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$ax2-£¨2a+1£©x+2lnx£¨a¡ÊR£©£®
£¨1£©ÈôÇúÏßy=f£¨x£©ÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏßбÂÊΪ-1£¬ÇóaµÄÖµ£»
£¨2£©ÌÖÂÛº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨3£©Éèg£¨x£©=x2-2x£¬Èô¶ÔÈÎÒâx1¡Ê£¨0£¬2]£¬¾ù´æÔÚx2¡Ê£¨0£¬2]£¬Ê¹µÃf£¨x1£©£¼g£¨x2£©£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êýy=cos4$\frac{x}{2}$-sin4$\frac{x}{2}$+2µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£®¦ÐB£®$\frac{¦Ð}{2}$C£®2¦ÐD£®$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èôcos£¨75¡ã+¦Á£©=$\frac{3}{5}$£¬£¨-180¡ã£¼¦Á£¼-90¡ã£©£¬Ôòsin£¨105¡ã-¦Á£©+cos£¨375¡ã-¦Á£©=$-\frac{8}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¨x¡Ü0£©}\\{lo{g}_{2}x£¨x£¾0£©}\end{array}\right.$£¬Èôf£¨a£©+f£¨1£©=$\frac{1}{2}$£¬Ôòa=-1»ò$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ä³ÈËÉä»÷µÄÃüÖÐÂÊΪp£¨0£¼p£¼1£©£¬ËûÏòһĿ±êÉä»÷£¬µ±µÚÒ»´ÎÉäÖÐÄ¿±êÔòÍ£Ö¹Éä»÷£¬Éä»÷´ÎÊýµÄÈ¡ÖµÊÇ1£¬2£¬3£¬¡­£¬n£¬¡­£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚÈýÀâ׶P-ABCÖУ¬Æ½ÃæPAB¡ÍƽÃæABC£¬PA=PB£¬AC¡ÍBC£¬AB=4£¬PC=6£¬ÔòÈýÀâ׶P-ABCµÄÍâ½ÓÇòOµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{81¦Ð}{2}$B£®41¦ÐC£®32$\sqrt{2}$¦ÐD£®32¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¦Á¡¢¦Â¡¢¦Ã×é³É¹«²îΪ$\frac{¦Ð}{3}$µÄµÈ²îÊýÁУ¬Çótan¦Á•tan¦Â+tan¦Âtan¦Ã+tan¦Ãtan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÈñ½Ç¦ÁµÄÖÕ±ßÉÏÒ»µãP£¨sin40¡ã£¬1+cos40¡ã£©£¬Ôò¦ÁµÈÓÚ70¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸