精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.
(1)求证:BC1平面AFB1
(2)求证:平面AFB1⊥平面ACC1A1
证明:(1)连接A1B与AB1交于点E,连接EF.在正三棱柱ABC-A1B1C1中,可得四边形ABB1A1是矩形,∴A1E=EB.
又A1F=FC1,∴EFBC1
∵EF?平面AB1F,BC1?平面AB1F,
∴BC1平面AFB1
(2)由正三棱柱ABC-A1B1C1中,可得AA1⊥底面A1B1C1,∴AA1⊥B1F.
由F是正△A1B1C1的A1C1的中点,∴B1F⊥A1C1
又A1A∩A1C1=A1,∴B1F⊥平面ACC1A1
∴平面AFB1⊥平面ACC1A1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知在三棱锥P-ABC中,PA⊥BC,PB⊥AC,则点P在平面ABC上的射影为△ABC的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆O所在平面为α,AB为直径,C是圆周上一点,且PA⊥AC,PA⊥AB,图中直角三角形有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求异面直线EF与BD所成的角β.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角;
(2)AO与平面ABCD所成角的正切值;
(3)平面AOB与平面AOC所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)证明:平面AB1C⊥平面A1BC1
(Ⅱ)设D是A1C1上的点,且A1B平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面是平行四边形的四棱锥P-ABCD,E、F、G分别为AB、PC、DC的中点,
(1)求证:EF面PAD;
(2)若PA⊥平面ABCD,求证:面EFG⊥面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,∠APD=90°,面APD⊥面ABCD,AB=1,AD=2,E,F分别为PC和BD的中点.
(1)求证:EF平面PAD;
(2)证明:平面PAD⊥平面PDC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点B与点A(1,2,3)关于M(0,-1,2)对称,则点B的坐标是______.

查看答案和解析>>

同步练习册答案