精英家教网 > 高中数学 > 题目详情
3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD为矩形,平面CDD1C1⊥平面ABCD,E,F分别是CD,AB的中点,求证:
(1)AD⊥CD;
(2)EF∥平面ADD1A1

分析 (1)利用平面与平面垂直的性质定理即可证明.
(2)利用已知条件证明四边形AFEG是平行四边形,从而根据EF∥AG即可证明EF∥平面ADD1A1

解答 证明:(1)由底面ABCD为矩形可得AD⊥CD
又∵平面C1D1DC⊥平面ABCD,
平面C1D1DC∩平面ABCD平面=CD,
∴AD⊥平面C1D1DC.                                     
又∵CD1?面C1D1DC,
∴AD⊥CD1.                        
(2)设DD1中点为G,连结EG,AG.
∵E,G分别为CD1,DD1的中点,
∴EG∥CD,EG=$\frac{1}{2}$CD.
在矩形ABCD中,
∵F是AB的中点,
∴AF=$\frac{1}{2}$CD且AF∥CD,
∴EG∥AF,且EG=AF.
∴四边形AFEG是平行四边形,
∴EF∥AG.
又∵AG?平面ADD1A1,EF?平面ADD1A1
∴EF∥平面ADD1A1

点评 本题考查直线与平面平行的判定定理,以及平面与平面垂直的性质定理的应用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若命题:“?x∈R,使得ax2+(a-3)x+1<0”为假命题.则实数a的范围为(  )
A.0<a≤1或a≥9B.a≤1或a≥9C.1≤a≤9D.a≥9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,且a1+a7+a13=4π,则cos(a2+a12)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{x-1≥0}\\{y-1≥0}\end{array}\right.$,则$\frac{x+y}{x}$的取值范围是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“?x∈R,x2>9”的否定是?x∈R,x2≤9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.72B.76C.80D.88

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$a={5^{{{log}_3}3.4}},b={5^{{{log}_4}3.6}},c={(\frac{1}{5})^{{{log}_3}0.3}}$,则(  )
A.c>a>bB.b>a>cC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z满足(-1+3i)z=2(1+i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C:x2+y2+2x+4y=0的圆心到直线3x+4y=4的距离d=3.

查看答案和解析>>

同步练习册答案