精英家教网 > 高中数学 > 题目详情

定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)关于点数学公式对称
②f(x)的图象关于直线x=1对称;
③在[0,1]上是增函数;
④f(2)=f(0).
其中正确的判断是________.(把你认为正确的判断都填上)

解:由f(x)为偶函数可得f(-x)=f(x),由f(x+1)=-f(x)可得f(1+x)=-f(-x),则f(x)图象关于点对称,即①正确;
f(x)图象关于y轴(x=0)对称,故x=1也是图象的一条对称轴,故②正确;
由f(x)为偶函数且在[-1,0]上单增可得f(x)在[0,1]上是减函数,即③错;
由f(x+1)=-f(x)可得f(2+x)=-f(x+1)=f(x),∴f(2)=f(0),即④正确
故答案为:①②④
分析:由f(-x)=f(x),f(x+1)=-f(x)可得f(1+x)=-f(-x),则可求f(x)图象关于点对称;
f(x)图象关于y轴(x=0)对称,可得x=1也是图象的一条对称轴,故可判断①②;
由f(x)为偶函数且在[-1,0]上单增可得f(x)在[0,1]上是减函数;
由f(x+1)=-f(x)可得f(2+x)=-f(x+1)=f(x),故f(2)=f(0).
点评:本题考查函数的对称性,函数的单调性,函数奇偶性的应用,考查学生分析问题解决问题的能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、定义在R上的函数f(x)最小正周期为5,且f(1)=1,则f(log264)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)时
,f(x)=2-x+1则f(8)=(  )
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义在R上的增函数,则不等式f(x)>f[8(x-2)]的解集是
{x|x<
16
7
}
{x|x<
16
7
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,满足f(-
3
2
+x)=f(
3
2
+x)
.当x∈(0,
3
2
)
时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在[-2013,2013]上的函数f(x)满足:对于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0时,有f(x)>2012,f(x)的最大、小值分别为M、N,则M+N的值为(  )

查看答案和解析>>

同步练习册答案