精英家教网 > 高中数学 > 题目详情

【题目】已知函数,为自然对数的底数.

1讨论的单调性;

2若函数的图象与直线交于两点,线段中点的横坐标为,证明: 为函数的导函数).

【答案】1 时,上单调递减,在上单调递增,当时,上单调递增,当时,上单调递增,在上单调递减;2证明见解析.

【解析】

试题分析:1借助题设条件运用导数与函数的单调性的关系与分类整合思想求解;2依据题设构造函数运用导数知识推证.

试题解析:

1由题可知,. 时,

,则,令,则.

时,.时,令,则,令,则,综上,时,上单调递减,在上单调递增;时,上单调递增;时,上单调递增,在上单调递减.

2

,,当时,

上单调递增,与轴不可能有两个交点,故.

时,令,则;令,则.

上单调递增,在上单调递减.不妨设

.要证,需证

即证

,所以只需证.

即证:当时,.

上单调递减,

,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列的前五项和,且成等比数列.

1求数列的通项公式;

2为数列的前项和,且存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为

(1)当直线过点时,求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合的关系,请用相关系数加以说明;

(Ⅱ)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

参考数据:

参考公式:相关系数

回归方程

本题中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 中点, 中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值的大小;

(Ⅲ)在棱上是否存在一点,使得的余弦值为?若存在,指出点上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1在分别为线段的中点为折痕折起到图2的位置,使平面⊥平面连接是线段上的动点满足

(1)证明:平面⊥平面

(2)若二面角的大小为的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位从一所学校招收某类特殊人才,对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:

例如表中运动协调能力良好且逻辑思维能力一般的学生是4人,由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为

(1)求的值

(2)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

,过点的直线交曲线两点,且,求直线的方程;

若曲线表示圆,且直线与圆交于两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27918,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.

)求应从这三个协会中分别抽取的运动员人数;

)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.

)用所给编号列出所有可能的结果;

)设为事件编号为的两名运动员至少有一人被抽到,求事件发生的概率.

查看答案和解析>>

同步练习册答案