精英家教网 > 高中数学 > 题目详情
(几何证明选讲选做题)如图,P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4
3
,则∠EFD=
30°
30°
,线段FD的长为
4
3
4
3
分析:连接OD,首先根据切割线定理计算出PE的长,再进一步计算出OP的长和圆的半径的长;从而在直角三角形OPD中,根据边之间的关系求得角的度数,再根据圆周角定理进行计算要求的角.
解答:解:连接DO,
∵PD为切线,PEF为割线,
∴由切割线定理得到PD2=PE•PF;

∵PD=4
3
,PF=12,
∴PE=
PD2
PF
=4,
∴EF=PF-PE=8,EO=4;
∵PD为切线,D为切点,
∴OD⊥PD;
∵在Rt△PDO中,OD=4,PO=PE+EO=8,
∴∠DPO=30°,∠DOP=60°,
∵OD=OF,∠DOP为∠DOF的外角,
∴∠EFD=
1
2
∠DOP=30°.
在三角形DOF中FD=2
DO
cos30°
=4
3

故答案为:30°;4
3
点评:本题主要考查圆的切线的性质定理,考查与圆有关的比例线段,考查直角三角形中有关的三角函数的知识,本题解题的关键是熟练应用平面几何中有关的定理定义和性质,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(几何证明选讲选做题)
自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.
求证:∠MCP=∠MPB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,直线MN切⊙O于D,∠MDA=60°,则∠BCD=
150°
150°

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于
12π
12π

(2)(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为
(-2,8)
(-2,8)

(3)(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为
7
10
10
的点的个数有
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)
如图,在Rt△ABC中,∠C=90°,E为AB上一点,以BE为直径作圆O刚好与AC相切于点D,若AB:BC=2:1,  CD=
3
,则圆O的半径长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(几何证明选讲选做题)
如图,AD为圆O直径,BC切圆O于点E,AB⊥BC,DC⊥BC,AB=4,DC=1,则AD等于
 

查看答案和解析>>

同步练习册答案