精英家教网 > 高中数学 > 题目详情
设集合,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:
【答案】分析:(1)先分别化简集合A,B,可求A∪B=[-1,1],要使C⊆(A∪B),则,故得解;
(2)先求得),由于对任意x∈R,有f(1-x)=f(1+x)成立,可知函数的对称轴为x=1,从而可确定函数f(x)=2x2-4x-1=2(x-1)2-3.,进而可求函数f(x)的值域.
(3)m∈[-1,1],x∈,从而f(x)的最小值为-1,最大值在端点处取得,故可证.
解答:解:(1)由题意,
∴A∪B=[-1,1]
要使C⊆(A∪B),则
∴实数m的取值范围是m≥-1.
(2)
∵对任意x∈R,有f(1-x)=f(1+x)成立,
∴函数的对称轴为x=1
∴m=-4
∴f(x)=2x2-4x-1=2(x-1)2-3.
∵x∈(A∩B),
∴函数f(x)的值域为
(3)m∈[-1,1],x∈
∴f(x)的最小值为-1,最大值在端点处取得



点评:本题以集合为载体,考查函数值域,考查函数的最值,关键是集合的化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是又满足下列性质的函数f(x)构成的集合:在定义域存中在x0,使得f(x0+1)=f(x0)+f(1)成立已知下列函数:
①f(x)=
1
x
;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cosπx,其中属于集合M的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f是由集合A={x|x∈N,且1≤x≤26}到B={a,b,c,…,z}(即26个英文字母按照字母表顺序排列)的映射,集合B中的任何一个元素在A中也只有唯一的元素与之对应,其对应法则如图所示(依次对齐);又知函数g(x)=
log232-x,(22<x<32)
x+4,(0≤x≤22)

若f(x1),f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列组成的英文单词为exam,则x1+x2=
35
35

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+(1-
2
2
)x-
2
2
≤0}
B={x|x2-(1-
2
2
)x-
2
2
≤0}
,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:|f(x)|≤
9
8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设集合数学公式数学公式,又设函数f(x)=2x2+mx-1.
(1)若不等式f(x)≤0的解集为C,且C⊆(A∪B),求实数m的取值范围.
(2)若对任意x∈R,有f(1-x)=f(1+x)成立,试求当x∈(A∩B)时,函数f(x)的值域.
(3)当m∈(A∪B),x∈(A∩B)时,求证:数学公式

查看答案和解析>>

同步练习册答案