【题目】已知数列,满足:对于任意正整数n,当n≥2时,.
(1)若,求的值;
(2)若,,且数列的各项均为正数.
① 求数列的通项公式;
② 是否存在,且,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
【答案】(1)84;(2)①();②,理由见解析.
【解析】
(1)在已知数列递推公式分别取为,累加可得的值;
(2)① 利用累加法求得,开方后求得数列的通项公式;
②由数列的通项公式求出,设,得到,列出不等式组,即可求解.
(1)由题意,因为,且,
可得,,,, ,,各式相加,可得.
(2)由,且,
可得,,,…,.
将上面的式子相加,得,
所以.
因为{an}的各项均为正数,故.
因为也适合上式,所以().
② 假设存在满足条件的k ,不妨设,
所以, 平方得,(*)
所以,
所以且,即
由(1)得,,即,
若,代入(*)式,求得不合,舍去;
若,结合(2)得,
所以,即,又且,
所以的可能取值为2,34,代入(*)式逐一计算,可求得.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴,轴分别交于两点,点是圆上任一点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点
(1)求证:平面PAB⊥平面CDE;
(2)若AD=CD=2,求点P到平面ADE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6个实数根(互不相同),则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和满足.
(1)证明数列为等差数列,并求出数列的通项公式.
(2)若不等式,对任意恒成立,求的取值范围.
(3)记数列的前项和为,是否存在正整数,使得成立,若存在,求出所有符合条件的有序实数对(,);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A.若“”为假命题,则“”为假命题
B.“”是“”的必要不充分条件
C.命题“若,则”的逆否命题为真命题
D.命题“,”的否定是“,”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .
(Ⅰ)写出和的值,并用列举法写出集合;
(Ⅱ)用表示有限集合所含元素的个数,求的最小值;
(Ⅲ)有多少个集合对,满足,且?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式|x+1|>|2﹣x|+1的解集为M,且a,b,c∈M.
(1)比较|a﹣b|与|1﹣ab|的大小,并说明理由;
(2)若,求a2+b2+c2的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com