精英家教网 > 高中数学 > 题目详情
3.二次函数y=ax2+2ax+1(a<0)在区间[-1,4]上的最大值为4,则a的值为-3.

分析 根据函数解析式确定函数对称轴,通过单调性确定最大值点,建立等量关系求解a的值.

解答 解:根据所给二次函数解析式可知,
对称轴为x=-1,
当a<0时,函数在[-1,4]上单调递减,
所以函数在x=-1处取得最大值,
f(-1)=-a+1=4,所以a=-3.
故答案为:-3.

点评 本题考察二次函数的性质,对于给出最值求参问题,一般要结合题中所给解析式大致确定函数图象、运用单调性来研究.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=mx2-mx-1.
(1)若f(x)<0的解集为R,求m的取值范围;
(2)解不等式f(x)+x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tan$\frac{α}{2}$=3,则cosα-sinα=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{5}$D.-$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆C1:x2+y2=9与圆C2:x2+y2-2x+2ky+k2-3=0.若圆C1与圆C2外切,则圆C1与圆C2的内公切线的方程为x$±2\sqrt{6}$y-15=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设Sn是等差数列{an}的前n项和,若a2+a7-a5=6,则S7=42.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,集合M={x|0≤ax+1≤3},N={x|-1≤x≤4},若M∪N=N,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在△ABC中,AB=$\sqrt{2}$,AC=1,以BC为边作等腰直角三角形BCD(B为直角顶点,A,D两点在直线BC的两侧),当∠A∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,$\overrightarrow{AC}$•$\overrightarrow{AD}$的取值范围是[$\frac{\sqrt{6}-\sqrt{2}}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x-2+ex-1的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2-6x-8y+21=0和直线l:kx-y-4k+3=0.
(1)证明:直线l恒过定点,并求出该定点;
(2)证明:不论k取何值,直线l和圆C总相交;
(3)当k取何值时,圆C被直线l截得的弦长最短?并求最短的弦的长度.

查看答案和解析>>

同步练习册答案