分析 根据圆的切线的性质,可知当过M点作圆的切线,切线与OM所成角是圆上的点与OM所成角的最大值,所以只需此角大于等于30°即可,此时半径,切线与OM构成直角三角形,因为切线与OM所成角大于等于30°所以OM小于等于半径的2倍,再用含x0的式子表示OM,即可求出x0的取值范围.
解答 解:过M作⊙C切线交⊙C于R,
根据圆的切线性质,有∠OMR≥∠OMN=30°.
反过来,如果∠OMR≥30°,
则⊙C上存在一点N使得∠OMN=30°.
∴若圆C上存在点N,使∠OMN=30°,则∠OMR≥30°.
∵|OR|=2,∴|OM|>4时不成立,∴|OM|≤4.
又∵|OM|2=x02+y02=x02+(4-x0)2=2x02-8x0+16,
∴2x02-8x0+16≤16,解得,0≤x0≤4.
∴x0的取值范围是[0,4],
故答案为:[0,4].
点评 本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考察了学生的转化能力,计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | {x|-2≤x≤4} | B. | {x|4<x<11} | C. | {x|1<x<4} | D. | {x|-2≤x<4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若A=R,B=(0,+∞),则f:x→|x|是集合A到集合B的函数 | |
B. | 若A={x|0≤x≤4},B={y|0≤y≤3},则f:y=$\frac{2}{3}$x是集合A到集合B的映射 | |
C. | 函数的图象与y轴至少有1个交点 | |
D. | 若y=f(x)是奇函数,则其图象一定经过原点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4对 | B. | 3对 | C. | 2对 | D. | 1对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {1<x≤5} | B. | {x≤-1或x>5} | C. | {x≤1或x>5} | D. | {1≤x<5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ln2 | B. | ln$\frac{4}{3}$ | C. | ln3 | D. | ln3-ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com