精英家教网 > 高中数学 > 题目详情

【题目】已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为

【答案】27﹣18
【解析】解∵设AB=x,则AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,

即AP=x﹣DP,

∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣

∵AB>AD,

∴3<x<6,

∴△ADP的面积S= ADDP= (6﹣x)(6﹣

=27﹣3(x+ )≤27﹣3×2 =27﹣18

当且仅当x=3 时取等号,

∴△ADP面积的最大值为27﹣18

所以答案是:27﹣18

【考点精析】认真审题,首先需要了解基本不等式(基本不等式:,(当且仅当时取到等号);变形公式:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[(f(x)﹣f(﹣x)]<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的a值为(
A.﹣3
B.
C.﹣
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为 ,曲线C2的极坐标方程为
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①“x∈R,x2﹣3x+3=0”的否定是真命题; ②“ ”是“2x2﹣5x﹣3<0”必要不充分条件;
③“若xy=0,则x,y中至少有一个为0”的否命题是真命题;
④曲线 与曲线 有相同的焦点;
⑤过点(1,3)且与抛物线y2=4x相切的直线有且只有一条.
其中是真命题的有:(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣sin2x﹣3cos2x+1.
(1)求函数y=f(x)的单调递增区间;
(2)若函数y=f(x)在区间[0,a]上恰有3个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+cos2x.
(1)当x∈[0, ]时,求f(x)的取值范围;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命题.
(1)求实数m的取值集合M;
(2)设不等式 的解集为N,若x∈N是x∈M的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为得到函数y=cos(x+ )的图象,只需将函数y=sinx的图象(
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

查看答案和解析>>

同步练习册答案