精英家教网 > 高中数学 > 题目详情

【题目】某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:

1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);

2)根据市场行情,该海鱼按重量可分为三个等级,如下表:

等级

一等品

二等品

三等品

重量(g

若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.

【答案】1610;(2)分布列见解析,

【解析】

(1)由频率分布直方图先求出每条海鱼平均重量,由此能估计这批海鱼有多少条.

2)从这批海鱼中随机抽取3条,的频率为,则,由此能求出X的分布列和数学期望.

解:(1)由频率分布直方图得每条海鱼平均重量为:

经销商购进这批海鱼100千克,

估计这批海鱼有:(条).

2)从这批海鱼中随机抽取3条,的频率为

X的分布列为:

X

0

1

2

3

P

0.216

0.432

0.288

0.064

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,PA=PD=CD=BC=1.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且是等比数列.

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)证明:,都有

2)若函数有且只有一个零点,求的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论f(x)的单调性;

(2)恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若称封闭曲线上任意两点距离的最大值为该曲线的直径,求曲线直径”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆的离心率为,直线交于两点,长度的最大值为4.

1)求的方程;

2)直线轴的交点为,当直线变化(不与轴重合)时,若,求点的坐标.

查看答案和解析>>

同步练习册答案