精英家教网 > 高中数学 > 题目详情
20.已知椭圆的对称轴为坐标轴,短轴的一个端点与两焦点构成顶角为120°的等腰三角形,则椭圆的离心率为$\frac{\sqrt{3}}{2}$.

分析 利用已知条件列出不等式,然后求解椭圆的离心率即可.

解答 解:椭圆的对称轴为坐标轴,短轴的一个端点与两焦点构成顶角为120°的等腰三角形,
可得:$\frac{c}{b}=\sqrt{3}$,$\frac{{c}^{2}}{{a}^{2}-{c}^{2}}=3$,解得e=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义在区间(-1,1)内,对于任意的x,y∈(-1,1)有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(-$\frac{1}{2}$)=1,求方程f(x)+$\frac{1}{2}$=0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.成书于公元五世纪的《张邱建算经》是中国古代数学史上的杰作,该书中记载有很多数列问题,如“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈. 问日益几何.”意思是:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加(  )(其中1匹=4丈,1丈=10尺,1尺=10寸)
A.5寸另$\frac{15}{29}$寸B.5寸另$\frac{5}{14}$寸C.5寸另$\frac{5}{9}$寸D.5寸另$\frac{1}{3}$寸

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“?x∈[1,2],x2-a≥0“是真命题,则实数a的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a,b,c,且满足a=2bcosC,则△ABC的形状为(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={-1,0,1,2},N={x||x|>1},则M∩N等于.(  )
A.{0}B.{2}C.{1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数z满足(1+i)•z=1-i,则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={0,1,2,3},集合A={1,2},B={2,3},则(∁UA)∪B={0,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)在[a,b]上有意义,若对任意x1、x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P,现给出如下命题:
①f(x)=$\frac{1}{x}$在[1,3]上具有性质P;
②若f(x)在区间[1,3]上具有性质P,则f(x)不可能为一次函数;
③若f(x)在区间[1,3]上具有性质P,则f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④若f(x)在区间[1,3]上具有性质P,则对任意x1,x2,x3,x4∈[1,3],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)].
其中真命题的序号为①③④.

查看答案和解析>>

同步练习册答案