精英家教网 > 高中数学 > 题目详情
椭圆+=1的左、右焦点分别为F1和F2,过中心O作直线与椭圆交于A、B两点,若△ABF2的面积为20,求直线AB的方程.

思路解析:可以设出直线的方程,联立方程组得到弦长,结合已知面积可求.

解:∵当AB⊥F1F2时,·2·5≠20,

∴AB与F1F2不能垂直.

∴可设直线AB的方程为y=kx,设A、B两点的坐标分别为(xA,yA)、(xB,yB).

得(4+9k2)x2-180=0,

|xA-xB|=×2.

=+

=|OF2|·|yB|+|OF2|·|yA|

=×5(|yB|+|yA|)=|yA-yB|,

又∵=20,∴|yA-yB|=20.∴|yA-yB|=8,即|kxA-kxB|=8.

把|xA-xB|=×2代入上式并平方,得4k2·=64,∴k=±.

∴所求直线方程为y=±x.

方法归纳

    解决直线与椭圆的交点问题,常把直线的方程与椭圆的方程组成方程组,消去y(或x)得到x(或y)的二次方程,由韦达定理或求根公式列出xA、xB、yA、yB之间的关系,并结合其他条件求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南郑州盛同学校高三4月模拟考试文科数学试卷(解析版) 题型:解答题

设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦 点。(1)若椭圆C上的点A(1,)到F1、F2两点的 距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案