精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体中,PQ分别是棱的中点.

1)求异面直线所成角的大小;

2)求以PQ四点为四个顶点的四面体的体积.

【答案】12

【解析】

1)建立空间直角坐标系,分别求出坐标,进而求得坐标,按照空间向量夹角公式,求出夹角余弦的绝对值,即可求解;

2)由已知条件可得平面,求出的面积,即可求出三棱锥体积.

1)以D为原点,方向为x轴正方向,

方向为y轴正方向,方向为z轴正方向建立空间直角坐标系.

所成的角的大小为

所成的角的大小为

2)该四面体是以为底面,P为顶点的三棱锥.

由正方体可得平面,四边形为正方形,则

PQ分别是棱的中点,则

所以,四边形为平行四边形,所以,得平面

所以P到平面的距离的面积

因此四面体的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已过抛物线的焦点作直线交抛物线两点,以两点为切点作抛物线的切线,两条直线交于点.

1)当直线平行于轴时,求点的坐标;

2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C的方程为O为坐标原点,A为椭团的上顶点,为其右焦点,D是线段的中点,且.

1)求椭圆C的方程;

2)过坐标原点且斜率为正数的直线交椭圆CPQ两点,分别作轴,轴,垂足分别为EF,连接并延长交椭圆C于点MN两点.

(ⅰ)判断的形状;

(ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差的等差数列,且

1)求的前项的和

2)若,问在数列中是否存在一项是正整数),使得成等比数列,若存在,求出的值,若不存在,请说明理由;

3)若存在自然数是正整数),满足,使得成等比数列,求所有整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆 的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点

(1)求椭圆的方程;

(2)已知的中点,是否存在定点,对于任意的都有,若存在,求出点

坐标;若不存在说明理由;

(3)若过点作直线的平行线交椭圆于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

上是单调递增函数,求的取值范围;

,当时,若,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人有两盒火柴,每盒都有根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有根()的概率_____.

查看答案和解析>>

同步练习册答案