精英家教网 > 高中数学 > 题目详情
3.已知n∈N*,且n>1,三个数ln$\frac{n+1}{n}$、$\frac{1}{n+1}$、$\frac{1}{n}$的大小关系是(  )
A.$\frac{1}{n}$>ln$\frac{n+1}{n}$>$\frac{1}{n+1}$B.ln$\frac{n+1}{n}$>$\frac{1}{n}$>$\frac{1}{n+1}$C.$\frac{1}{n}$>$\frac{1}{n+1}$>ln$\frac{n+1}{n}$D.$\frac{1}{n+1}$>$\frac{1}{n}$>ln$\frac{n+1}{n}$

分析 构造函数f(x)=x-ln(1+x),x>0,利用导数判断f(x)的单调性,得出x>ln(1+x),令x=$\frac{1}{n}$得$\frac{1}{n}$>ln$\frac{n+1}{n}$;同理,设g(x)=ln(1+x)-$\frac{x}{1+x}$,x>0,得出ln$\frac{n+1}{n}$>$\frac{1}{n+1}$,即得$\frac{1}{n}$>ln$\frac{n+1}{n}$>$\frac{1}{n+1}$.

解答 解:设函数f(x)=x-ln(1+x),x>0,
∴f′(x)=1-$\frac{1}{1+x}$>0,
∴f(x)在(0,+∞)上是增函数,
∴f(x)>f(0)=0,
∴x>ln(1+x);
令x=$\frac{1}{n}$,n∈N*,且n>1,
则$\frac{1}{n}$>ln(1+$\frac{1}{n}$)=ln$\frac{n+1}{n}$;
同理,设g(x)=ln(1+x)-$\frac{x}{1+x}$,x>0,
∴g′(x)=$\frac{1}{1+x}$-$\frac{1}{{(1+x)}^{2}}$=$\frac{x}{{(1+x)}^{2}}$>0,
∴g(x)在(0,+∞)上是增函数,
∴g(x)>g(0)=0,
∴ln(1+x)>$\frac{x}{1+x}$;
令x=$\frac{1}{n}$,n∈N*,且n>1,
∴ln(1+$\frac{1}{n}$)>$\frac{\frac{1}{n}}{1+\frac{1}{n}}$,
即ln$\frac{n+1}{n}$>$\frac{1}{n+1}$;
综上,$\frac{1}{n}$>ln$\frac{n+1}{n}$>$\frac{1}{n+1}$.
故选:A.

点评 本题考查了构造函数的应用问题,也考查了利用导数判断函数的单调性以及利用函数的单调性比较大小的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若向量$\overrightarrow a=(3,1)$,$\overrightarrow b$=(m,m+1),且$\overrightarrow a$∥$\overrightarrow b$,则实数m的值为(  )
A.$-\frac{3}{2}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X,求X的期望E(X).
附:
K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙两人各射击1次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设两人射击目标是否击中相互之间没有影响,每人各次射击是否击中目标也没有影响.则两人各射击4次,甲恰好有2次击中目标且乙恰好有3次击中目标的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=ex-mx2定义域为(0,+∞),值域为[0,+∞),则m的值为$\frac{{e}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,直线PB与圆O相切于点B,D是弦AC上的点,∠PBA=∠DBA.若AD=2,AC=8,则AB=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设非零向量$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{5π}{6}$,且$|\overrightarrow a|=|\overrightarrow a+\overrightarrow b|$,则$\frac{|2\overrightarrow a+t\overrightarrow b|}{|\overrightarrow b|}$(t∈R)的最小值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A,B,C,D猜测如下:A说:获奖的不是1号就是2号;A说:获奖的不可能是3号;C说:4号、5号、6号都不可能获奖;D说:获奖的是4号、5号、6号中的一个.比赛结果表明,四个人中恰好有一个人猜对,则猜对者一定是观众C获特别奖的是3号选手.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如下图所示,则该几何体为(  )
A.三棱柱B.三棱锥C.圆锥D.四棱锥

查看答案和解析>>

同步练习册答案