精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若曲线处的切线互相平行,求的值及函数的单调区间;
(Ⅱ)设,若对任意,均存在,使得,求实数的取值范围.

(1)其单调递增区间为单调递减区间为
(2)

解析试题分析:(Ⅰ),由,…(2分)
得其单调递增区间为单调递减区间为.   (5分)
(Ⅱ)若要命题成立,只须当时,,由可知 当,所以只须         (7分)
来说,
①当时,
时,显然小于0,满足题意,当时,可令求导可知该函数在时单调递减,,满足题意,所以满足题意,
②当时,上单调递增,
    综上所述,满足题意的              (12分)
考点:导数的运用
点评:主要是考查了导数在研究函数性质中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


的单调区间
 两点连线的斜率为,问是否存在常数,且,当时有,当时有;若存在,求出,并证明之,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.        
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的单调区间;
(2)若关于的方程在区间上有唯一实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若存在函数使得恒成立,则称的一个“下界函数”.
(I) 如果函数为实数的一个“下界函数”,求的取值范围;
(Ⅱ)设函数 试问函数是否存在零点,若存在,求出零点个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若函数有极值,求的值;
(2)若函数在区间上为增函数,求的取值范围;
(3)证明:

查看答案和解析>>

同步练习册答案