【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量.2007~2018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.根据折线图和条形图,下列结论正确的有( )
A.2012年至2013年研发投入占营收比增量相比2017年至2018年研发投入占营收比增量大
B.2013年至2014年研发投入增量相比2015年至2016年研发投入增量小
C.该企业连续12年来研发投入逐年增加
D.该企业连续12年来研发投入占营收比逐年增加
科目:高中数学 来源: 题型:
【题目】超级细菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧,痉挛,昏迷,甚至死亡.
某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有份血液样本,每个样本取到的可能性相等,有以下两种检验方式:(1)逐份检验,则需要检验次;(2)混合检验,将其中(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,则这份的血液全为阴性,因而这份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
现取其中(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为
(1)运用概率统计的知识,若,试求关于的函数关系式;
(2)若与抗生素计量相关,其中是不同的正实数,满足,对任意的,都有
(i)证明:为等比数列;
(ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.
参考数据:,,,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了解本市万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.
(1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);
(2)求这名学生成绩在内的人数;
(3)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求的分布列和数学期望.
参考数据:若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.
(1)证明:BC⊥平面PDB,
(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,a∈R.
(1)若函数f(x)在x=1处的切线为y=2x+b,求a,b的值;
(2)记g(x)=f(x)+ax,若函数g(x)在区间(0,)上有最小值,求实数a的取值范围;
(3)当a=0时,关于x的方程f(x)=bx2有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,同时带动了垃圾桶的销售.某垃圾桶生产和销售公司通过数据分析,得到如下规律:每月生产只垃圾桶的总成本由固定成本和生产成本组成,其中固定成本为100万元,生产成本为.
(1)写出平均每只垃圾桶所需成本关于的函数解析式,并求该公司每月生产多少只垃圾桶时,可使得平均每只所需成本费用最少?
(2)假设该类型垃圾桶产销平衡(即生产的垃圾桶都能卖掉),每只垃圾桶的售价为元,满足.若当产量为15000只时利润最大,此时每只售价为300元,试求的值.(利润销售收入成本费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com