精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线方程为y=
3
x
,两条准线间的距离为1,F1,F2是双曲线的左、右焦点.
(Ⅰ)求双曲线的方程;
(Ⅱ)直线l过坐标原点O且和双曲线交于两点M,N,点P为双曲线上异于M,N的一点,且直线PM,PN的斜率均存在,求kPM•kPN的值.
分析:(Ⅰ)依题意,双曲线焦点在x轴上,且其一条渐近线方程为y=
3
x
,两条准线间的距离为1,可得方程组:
b
a
=
3
2a2
c
=1
a2+b2=c2.

解得a2=1,b2=3,代入可得答案;
(Ⅱ)设M(x0,y0),由双曲线的对称性,可得N的坐标,设P(xP,yP),结合题意,又由M在双曲线上,可得x02-
y02
3
=1
,将其坐标代入kPM•kPN中,计算可得答案.
解答:解:(Ⅰ)依题意,双曲线焦点在x轴上,
有:
b
a
=
3
2a2
c
=1
a2+b2=c2.

解得a2=1,b2=3.
∴双曲线方程为x2-
y2
3
=1

(Ⅱ)设M(x0,y0),由双曲线的对称性,可得N(-x0,-y0).
设P(xP,yP),
kPMkPN=
yP-y0
xP-x0
yP+y0
xP+x0
=
yP2-y02
xP2-x02

x02-
y02
3
=1

∴y02=3x02-3.
同理yP2=3xP2-3,
kPMkPN=
3xP2-3-3x02+3
xP2-x02
=3
点评:本题考查双曲线与直线相交的性质,此类题目一般计算量较大,注意计算的准确性,其次要尽可能的简化运算,以降低运算量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案