精英家教网 > 高中数学 > 题目详情
如图,在正方形中,为坐标原点,点的坐标为,点的坐标为,分别将线段十等分,分点分别记为,连接,过轴的垂线与交于点

(1)求证:点都在同一条抛物线上,并求抛物线的方程;
(2)过点作直线与抛物线E交于不同的两点, 若的面积之比为4:1,求直线的方程。
(1)见解析
(2)直线的方程为,即
(1)依题意,过且与x轴垂直的直线方程为
直线的方程为
坐标为,由得:,即
都在同一条抛物线上,且抛物线方程为
(2)依题意:直线的斜率存在,设直线的方程为

此时,直线与抛物线恒有两个不同的交点
设:,则


分别带入,解得
直线的方程为,即
此题在问法上给学生设了一个卡,如果第一问直接问的轨迹方程,估计学生更容易入手一些,不过对于知识要活学活用(证明它求出不就说明问题了)。那么第二问有关解析几何的计算就要善于转化,且计算要过关。
【考点定位】 本题考查抛物线的性质、直线与抛物线的位置关系等基础知识,考查运算求解能力,化归与转化及数形结合思想、函数与方程思想。属于中等难度。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面平行,P是直线上的一定点,平面内的动点B满足:PB与直线 。那么B点轨迹是 (    )                          
A.椭圆B.双曲线C.抛物线D.两直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是(   )
A.圆B.椭圆C.双曲线的一支D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在等腰直角中,,点在线段上.

(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线交椭圆两点,椭圆与轴的正半轴交于点,若的重心恰好落在椭圆的右焦点上,则直线的方程是(      )
A. B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的右焦点为为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点,
(1)求椭圆的标准方程;
(2)当=时,=,求实数的值;
(3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论

查看答案和解析>>

同步练习册答案