精英家教网 > 高中数学 > 题目详情
9.(1)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值;
(2)已知log4(3x-1)=log4(x-1)+log4(3+x),求实数x的值.

分析 (1)利用平方关系,求出${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{5}$,利用立方和公式求出x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值;
(2)利用对数的运算性质,即可求实数x的值.

解答 解:(1)∵$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$=x+x-1+2=5,
∴${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{5}$,
∴x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$=$\sqrt{5}•(3-1)$=2$\sqrt{5}$;
(2)∵log4(3x-1)=log4(x-1)+log4(3+x),
∴log4(3x-1)=log4[(x-1)(3+x)],
∴3x-1=(x-1)(3+x),x>1,
∴x=2.

点评 本题考查指数幂的运算性质,考查对数的运算性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若$\frac{{b}^{2}}{ac}$≥$\frac{co{s}^{2}B}{cosAcosC}$,则B的取值范围为(  )
A.(0,$\frac{π}{6}$]B.[$\frac{π}{6}$,$\frac{π}{2}$)C.(0,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.
(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,抛物线y2=2px(p>0)的焦点为F,点A(4,m)在抛物线上,且|AF|=5.
(1)求抛物线的标准方程.
(2)是否存在直线l,使l过点(0,1),并与抛物线交于B,C两点,且满足$\overrightarrow{OB}$•$\overrightarrow{OC}$=0?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{{x}^{2}+x+1}{{x}^{2}+1}$,若f(a)=$\frac{4}{3}$,则f(-a)=(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.方程2sin2x-(2a+3)sinx+(4a-2)=0有实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.记不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面区域为D,若直线y=a(x+1)与D没有公共点,则实数a的取值范围是(-∞,$\frac{1}{2}$)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=ex,g(x)=mx+n,若对任意实数x,都有f(x)≥g(x),则mn的最大值为$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=arccosx在x∈[-1,$\frac{1}{2}$]]的值域是[$\frac{π}{3}$,π].

查看答案和解析>>

同步练习册答案