【题目】给出下列命题:①若,则;②若,,则;③若,则;④;⑤若,,则,;⑥正数,满足,则的最小值为.其中正确命题的序号是__________.
【答案】②③④⑤
【解析】分析:利用不等式的性质与基本不等式对①②③④⑤⑥逐项判断即可.
详解:①若a<b<0,则,故①错误;
②若a>0,b>0,则≥(当且仅当a=b时取等号);
又﹣=(1﹣)≥(1﹣)=>0≥0,
所以≥,综上,≥≥,故②正确;
③若a<b<0,则a2>ab>0,ab>b2>0,
因此,a2>ab>b2,故③正确;
④lg9lg 11<()2=<=1,故④正确;
⑤若a>b,>﹣>0>0<0,则ab<0,所以a>0,b<0,故⑤正确;
⑥正数x,y满足+=1,则x+2y=(x+2y)(+)=1+2++≥3+2,故其最小值为3+2,故⑥错误.
综上所述,正确命题的序号是:②③④⑤,
故答案为:②③④⑤.
科目:高中数学 来源: 题型:
【题目】已知函数,其中
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上有且只有一个极值点,求实数的取值范围;
(3)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为.
(Ⅰ)若直线l的斜率为-1,求直线l与曲线C交点的极坐标;
(Ⅱ)若直线l与曲线C相交弦长为,求直线l的参数方程(标准形式).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在函数的图象上,数列的前项和为,数列的前 项和为,且是与的等差中项.
()求数列的通项公式.
()设,数列满足,.求数列的前项和.
()在()的条件下,设是定义在正整数集上的函数,对于任意的正整数,,恒有成立,且(为常数,),试判断数列是否为等差数列,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过底面是矩形的四棱锥FABCD的顶点F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若点G在CD上且满足DG=G.
求证:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的左焦点为,且过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线与椭圆E交于两点,与的交点为,且满足.
①若,求: 的值;
②设点是椭圆E的左顶点,点关于轴的对称点为点,试探究:在线段上是否存在一个定点,使得直线过定点,如果存在,求出点的坐标;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.
(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;
(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com