精英家教网 > 高中数学 > 题目详情
在正项数列{an}中,a1=6,点An(an
an+1
)
在抛物线y2=x+1上;在数列{bn}中,数列前n项的和为Sn=n2+2n.
(Ⅰ)求数列{an}和{bn}的通项公式;n为奇数n为偶数
(Ⅱ)若f(n)=
an
bn
,问是否存在k∈N*,使f(k+27)=4f(k)成立?若存在,求出k的值;若不存在,请说明理由.
分析:(Ⅰ)将点An(an
an+1
)
代入y2=x+1中,得an+1=an+1,由此能求出数列{an}和{bn}的通项公式.
(Ⅱ)由(Ⅰ)知f(n)=
n+5,n为奇数
2n+1,n为偶数
,当k为偶数时,k+27为奇数,由此求出k=4;当k为奇数时,k+27为偶数,k=
35
2
(舍).综上,存在唯一的k=4符合条件.
解答:解:(Ⅰ)将点An(an
an+1
)
代入y2=x+1中,
得an+1=an+1,
an+1-an=d=1,
an=a1+(n-1)×1=n+5,
直线L:y=2x+1,
∴bn=2n+1
(Ⅱ)由(Ⅰ)知f(n)=
n+5,n为奇数
2n+1,n为偶数

当k为偶数时,k+27为奇数,
∵f(k+27)=4f(k)
k+27+5=4(2k+1),
∴k=4
当k为奇数时,k+27为偶数,
2(k+27)+1=4(k+5),
∴k=
35
2
(舍).
综上,存在唯一的k=4符合条件.
点评:本题考查数列通项公式的求法和实数k是否存在的判断,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在正项数列{an}中,Sn表示前n项和且2
Sn
=an+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项数列{an}中,a1=2,点(
an
an_-1
)(n≥2)在直线x-
2
y=0上,则数列{an}的前n项和Sn等于(  )
A、2n-1﹡
B、2n+1-2
C、2
n
2
-
2
D、2
n+2
2
-
2
[

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项数列{an}中,令Sn=
n
i=1
1
ai
+
ai+1

(Ⅰ)若{an}是首项为25,公差为2的等差数列,求S100
(Ⅱ)若Sn=
nP
a1
+
an+1
(P为正常数)对正整数n恒成立,求证{an}为等差数列;
(Ⅲ)给定正整数k,正实数M,对于满足a12+ak+12≤M的所有等差数列{an},求T=ak+1+ak+2+…a2k+1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正项数列{an}中,Sn表示前n项和且2
Sn
=an+1,则an=
 

查看答案和解析>>

同步练习册答案