精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.
(1);(2)证明:
所以

试题分析:(1)设等差数列的公差为d
d=1;           …………3分
所以                   …………6分
(2)证明:                            …………8分
所以
…………12分
点评:高考中中的数列解答题考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.因此在高考复习的后期,要特别注意加强对由递推公式求通项公式、求有规律的非等差(比)数列的前n项和等的专项训练.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正项等差数列的前项和为,且满足
(Ⅰ)求数列的通项公式
(Ⅱ)若数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列的通项公式为,若其图像上存在点在可行域 内,则的取值范围为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知数列满足,数列满足
数列满足.
(1)若,证明数列为等比数列;
(2)在(1)的条件下,求数列的通项公式;
(3)若,证明数列的前项和满足

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列中,,则使成立的值是(     )
A.21B.22 C.23D.24

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知数列的前n项和,且与1的等差中项。
(1)求数列和数列的通项公式;
(2)若,求
(3)若,是否存在,使得并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)设数列为单调递增的等差数列依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若求数列的前项和
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2?bn=1,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出若干数字按下图所示排成倒三角形,其中第一行各数依次是l,2,3,…,2013,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M,则这个数M是        。  

查看答案和解析>>

同步练习册答案