精英家教网 > 高中数学 > 题目详情
已知数列{an}中an=n•2n-1,则前n项和Sn=
 
分析:已知数列{an}中an=n•2n-1,利用错位相减法求解,即Sn-2Sn,构造等比数列进行求解.
解答:解:∵数列{an}中an=n•2n-1
∴Sn=1+2•21+3•22+…+n•2n …①,
2Sn=1+2•22+3•23+…+n•2n+1 …②,
∴①-②得
-Sn=1+(21+22+23+…+2n-1-n•2n
∴-Sn=
1×(1-2n)
1-2
-n×2n
∴Sn=(n-1)2n+1,
故答案为:Sn=(n-1)2n+1;
点评:此题主要考查了数列的求和问题,运用了错位相减法求数列{an}的前n项和,这个方法是高考中常用的方法,同学们要熟练掌握它.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案
关 闭